Câu hỏi:
17/07/2022 1,518Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số y = 3sinx + 4cosx − 1
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1:
Ta có: y = 3sinx + 4cosx − 1
⇔ y + 1 = 3sinx + 4cosx
⇒(y+1)2 = (3sinx + 4cosx)2
Bước 2:
Sử dụng bất đẳng thức Bu – nhi – a Cốp – xki:
(ac + bd)2 ≤ (a2 + b2)(c2 + d2)
. Với a = 3,c = sinx, b = 4, d = cosx
Khi đó
(3.sinx + 4.cosx)2 ≤ (32 + 42)(sin2 x + cos2 x)
= (32 + 42).1 = 25
⇒ −5 ≤ y + 1 ≤ 5
⇔ −6 ≤ y ≤ 4
Bước 3:
Dấu “=” xảy ra
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = cos2x + cosx. Khi đó M + m bằng bao nhiêu?
Câu 4:
y = 2sin2 x + cos2 2x:
về câu hỏi!