Câu hỏi:

27/07/2022 1,773

Cho hàm số y=fx   liên tục trên  và có đạo hàm  f'(x)=x2(x2)(x26x+m)  với mọi x . Có bao nhiêu số nguyên m thuộc đoạn 2019;2019  để hàm số g(x)=f(1x)  nghịch biến trên khoảng ;1?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

g'x=f1x'=1x'f'1x=f'1x

=1x21x21x261x+m

=1x21xx2+4x+m5=x12x+1x2+4x+m5

Hàm số g(x) nghịch biến trên ;1
g'x0,x;1x+1x2+4x+m50,x;1
x2+4x+m50,x;1 (do x+1<0,x;1 
hx=x2+4x5m  x;1
mmin;1hx
Ta có: h'x=2x+4=0x=2

BBT:

Media VietJack

Dựa vào BBT ta có  m9m9

Mà m2019;2019 và m nguyên nên m9;10;11;...;2019 hay
 

có 20199+1=2011 giá trị của m thỏa mãn.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: y'=3x26mxy'=0x=0

Trường hợp 1: m<0

Media VietJack

Dễ thấy hàm số trên khoảng (0;1) đồng biến với mọi m<0 (loại)

Trường hợp 2: m=0

Với m=0  thì y'=3x20 nên hàm số đồng biến trên RR .

Do đó hàm số đồng biến trên (0;1) (loại)

Trường hợp 3: m>0

 

Media VietJack

Dễ thấy hàm số trên khoảng (0;1) nghịch biến 2m1m12

Đáp án cần chọn là: A

Lời giải

Ta có: y'=x24mx+4m

Hàm số nghịch biến trên

2;0y'0,x2;0x24mx+4m0,x2;0

x24mx104mx1x24mx2x1(vì −2<x<0)

Xét hàm gx=x2x1 trên (−2;0) ta có:

g'(x)=x22x(x1)2=0x=0(2;0)x=2(2;0)g'(x)>0,x(2;0)

Do đó hàm số y=gx  đồng biến trên (−2;0)

Suy ra g2<gx<g0,x2;0 hay 43<gx<0,x2;0

Khi đó 4mgx,x2;04m43m13

Vậy m13

Đáp án cần chọn là: B


 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP