Câu hỏi:

28/07/2022 2,206

Trong không gian với hệ tọa độ  Oxyz, cho hai điểm  A(1;4;2) , B(−1;2;4). Tìm tọa độ điểm M thuộc trục Oz  sao cho :MA2+MB2=32.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

M nằm trên trục Oz, giả sử M(0;0;m).

Ta có

MA=(01)2+(04)2+(m2)2=(m2)2+17MB=(0+1)2+(02)2+(m4)2=(m4)2+5

Theo giả thiết MA2+MB2=32 suy ra ta có

(m2)2+17+(m4)2+5=32

(m2)2+(m4)2=10

2m212m+20=10

2m212m+10=0

m=1m=5

Vậy M(0;0;1) hoặc M(0;0;5)

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi M là trung điểm của BC. Ta cóAB+AC=2AM

Do tính chất trọng tâm cóAM=32AG.Suy raAB+AC=3AG

AG=22;14;0(3)=0;3;3.Suy ra3AG=(0;9;9)

Đáp án cần chọn là: A

Lời giải

Chú ý rằng5a,2b=1800a,b=1500.

Sử dụng công thứcma,nb=m.n.a.b.sinma,nb, ta được5a,2b=5.2.23.3.sin1500=303.

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP