Câu hỏi:

28/07/2022 230

Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng P:ax+by+cz27=0 qua hai điểm A(3,2,1),B(−3,5,2)  và vuông góc với mặt phẳng Q:3x+y+z+4=0 . Tính tổng S=a+b+c.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

A,B thuộc (P) nên ta có hệ phương trình3a+2b+c27=03a+5b+2c27=0

(P) vuông góc với (Q)  nên ta có điều kiện 3a+b+c=0.

Giải hệ3a+2b+c27=03a+5b+2c27=03a+b+c=0a=6b=27c=45

 Suy ra S=12.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho ba điểm A(1,0,0),B(0,1,0) và C(0,0,1). Phương trình mặt phẳng (P)  đi qua ba điểm A,B,C là:

Xem đáp án » 28/07/2022 2,090

Câu 2:

Viết phương trình mặt phẳng (P)  đi qua điểm M(1;0;−2) và vuông góc với hai mặt phẳng (Q),(R)  cho trước với (Q):x+2y3z+1=0  (R):2x3y+z+1=0 .

Xem đáp án » 28/07/2022 641

Câu 3:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4,−1,2),B(2,−3,−2) . Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB.

Xem đáp án » 28/07/2022 563

Câu 4:

Cho mặt phẳng α đi qua hai điểm M(4;0;0) và N(0;0;3) sao cho mặt phẳng α tạo với mặt phẳng (Oyz) một góc bằng 600.  Tính khoảng cách từ điểm gốc tọa độ đến mặt phẳng α

Xem đáp án » 28/07/2022 524

Câu 5:

Cho mặt phẳng (P) có phương trình x+3y−2z+1=0 và mặt phẳng (Q) có phương trình x+y+2z1=0. Trong các mặt phẳng tọa độ và mặt phẳng (Q) , xác định mặt phẳng tạo với (P) góc có số đo lớn nhất.

Xem đáp án » 28/07/2022 517

Câu 6:

Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1,3,−2) và song song với mặt phẳng P:2xy+3z+4=0 là:

Xem đáp án » 28/07/2022 431

Câu 7:

Phương trình mặt phẳng (P) đi qua điểm M(3;4;1) và giao tuyến của hai mặt phẳng Q:19x6y4z+27=0 và (R):42x8y+3z+11=0 là:

Xem đáp án » 28/07/2022 400

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store