Câu hỏi:

29/07/2022 265 Lưu

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình: x2+y2+z22x+4y2z3=0  và đường thẳng Δ:x2=y+12=z  . Mặt phẳng (P) vuông góc với Δ và tiếp xúc với (S) có phương trình là 

A. 2x2y+z2=0 và 2x2y+z+16=0

B. 2x2y+z2=0 và 2x2y+z-16=0

C. 2x2y38+6=0  và 2x2y386=0

D. 2x2y+386=0 và 2x2y386=0

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tâm mặt cầu I(1;−2;1), bán kính R=3.

Mặt phẳng (P) vuông góc với Δ  có phương trình dạng 2x2y+z+D=0

Vì (P) tiếp xúc với mặt cầu nên d(I,(P))=R|D7|=9D=2D=16

Phương trình (P) là 2x2y+z2=0;2x2y+z+16=0
Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tâm I thuộc đường thẳng d nên It;3+t;2t

Phương trình mặt phẳng Oxz:y=0

Ta có bán kính mặt cầu IM=22  mặt cầu cắt mặt phẳng (Oxz) theo đường tròn có bán kính HM=2 suy ra dI,Oxz=IH=IM2HM2=84=2
Ta có |3+t|=23+t=23+t=2t=5I(5;2;10)t=1I(1;2;2)

Media VietJack

Đáp án cần chọn là: A

Lời giải

Lấy AdA2a;a;4 và Bd'Bb;3b;0

Ta có: AB=b2a;3ab;4

AB là đoạn vuông góc chung của hai đường thẳng d và d′ khi và chỉ khi

AB.ud=0AB.ud'=02.(b2a)+1.(3ab)+0.(4)=01.(b2a)1.(3ab)+0.(4)=05a+b+3=0a+2b3=0a=1b=2

Suy ra A2;1;4,B2;1;0 và AB=0;0;4

Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′

Có tâm I là trung điểm của AB và bán kính R=AB2

Ta có I(2;1;2) và R=AB2=42=2

 Vậy ta có (x2)2+(y1)2+(z2)2=4

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. (x2)2+y2+(z1)2=2

B. (x2)2+y2+(z1)2=9

C. (x2)2+y2+(z1)2=4

D. (x1)2+(y2)2+(z1)2=24

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP