Câu hỏi:

29/07/2022 302

Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d:x=ty=1z=tvà 2 mặt phẳng (P)  và (Q) lần lượt có phương  trình x+2y+2z+3=0;x+2y+2z+7=0. Viết phương trình mặt cầu (S) có tâmI  thuộc đường thẳng d, tiếp xúc với hai mặt phẳng (P)  và (Q).

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có IdI(t;1;t)

d(I,(P))=d(I,(Q))|t22t+3|12+22+22=|t22t+7|12+22+22

|t+1|=|t+5|t=3

I(3;1;3)

R=|3+1|9=23

S(x3)2+(y+1)2+(z+3)2=49

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng Δ:x1=y+31=z2 . Biết rằng mặt cầu (S) có bán kính bằng 22 và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính 2. Tìm tọa độ tâm I.

Xem đáp án » 29/07/2022 5,706

Câu 2:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:x11=y21=z+12, điểm A(2;−1;1). Gọi I là hình chiếu vuông góc của A lên d. Viết phương trình mặt cầu (C) có tâm I và đi qua A.

Xem đáp án » 29/07/2022 685

Câu 3:

Trong không gian với hệ tọa độ  Oxyz, cho mặt cầu (S) có phương trình x+12+y12+z22=4. Phương trình nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua trục Oz.

Xem đáp án » 29/07/2022 635

Câu 4:

Trong không gian với hệ tọa độ Oxyz, phương trình  mặt cầu (S) có tâm I(2;0;1)  và tiếp xúc với đường thẳng d:x11=y2=z21 là:

Xem đáp án » 29/07/2022 623

Câu 5:

Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng P:2x+2yz3=0  và mặt cầu S:x32+y22+z52=36. Gọi Δ là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của Δ là:

Xem đáp án » 29/07/2022 576

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d:x=2ty=tz=4 và d':x=t'y=3t'z=0 . Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′ là: 

Xem đáp án » 29/07/2022 502

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x2+(y+1)2+z2=R2. Điều kiện của bán kính R để trục Ox tiếp xúc với (S) là: 

Xem đáp án » 29/07/2022 485
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua