Câu hỏi:

29/07/2022 254

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P:x2y+2z3=0 và mặt cầu S:x2+y2+z2+2x4y2z+5=0. Giả sử MP  NS  sao cho MN  cùng phương với vectơ u=1;0;1 và khoảng cách MN lớn nhất. Tính MN 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(S) có tâm I(–1;2;1) và R=1.

Gọivt;0;tlà vectơ cùng phương với vectơ u1;0;1sao cho phép tịnh tiến vectơ đó biến (S) thành (S′) tiếp xúc với (P)

Phép tịnh tiến vectơ vt;0;t biến I thành I'(1+t;2;1+t)

Suy ra (S′) có tâm I′ và bán kínhR'=R=1

(S′) tiếp xúc (P)


d(I;(P))=1|1+t2.2+2(1+t)3|1+4+4=1

|3t6|=3t=3t=1

Vớit=3v3;0;3v=32

Vớit=1v1;0;1v=2

Vậy giá trị lớn nhất của MN là 32

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bước 1:

Dễ dàng nhận thấy O,A,B đều nằm ngoài mặt cầu (C) nên (OAB) không cắt mặt cầu (C).

Media VietJack

Mặt cầu (C) ta có tâm I(−1;3;2), bán kính R=1.

Ta cóOA=2;1;0,  OB=0;2;0OA;OB=0;0;4

SΔOAB=12OA;OB=2

Bước 2:

VS.OAB=13dS;OAB.SΔOAB

SΔOAB không đổi nênVS.OAB đạt giá trị lớn nhất khi và chỉ khi 
dS;OAB lớn nhất, khi đó dS;OAB=R+dI;OAB

Bước 3:

Mặt phẳng (OAB) nhậnn=14OA;OB=0;0;1 là 1 VTPT nên có phương trình: z = 0.

dI;OAB=zI=2dS;OABmax=1+2=3

Vậy maxVS.OAB=13.3.2=2

Đáp án cần chọn là: C

Lời giải

(P) là mặt phẳng tiếp xúc với (S) tại A nếu và chỉ nếu (P) đi qua AIAP

Ta có:IA=(1;1;3) là vec tơ pháp tuyến của mặt phẳng (P).

Mà (P)  lại đi qua A(2;1;2) nên:P:1x21y1+3z2=0x+y3z+3=0

Đáp án cần chọn là: D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP