Câu hỏi:

01/08/2022 707 Lưu

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên hợp với đáy một góc 600. Thể tích khối chóp S.ABC là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1:

Gọi G là trọng tâm tam giác ABC. Vì chóp S.ABC đều nên SGABC

Gọi D là trung điểm của BC ta có: ADBC

Ta có: BCADBCSG(SG(ABC))BC(SAD)BCSD

(SBC)(ABC)=BC(SBC)SDBC(ABC)ADBC((SBC);(A^BC))=(SD;A^D)=SDA^=600

Media VietJack

Bước 2:

Vì tam giác ABC đều cạnh a nên AD=a32DG=13AD=a36

SGABCSGADΔSGD vuông tại G

SG=GD.tan60=a36.3=a2

Bước 3:

Tam giác ABC đều SΔABC=a234

Bước 4:

VS.ABC=13SG.SΔABC=13.a2.a234=a3324

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O=ACBD.Vì chóp S.ABCD đều nên SOABCD

Vì chóp S.ABCD đều nên ABCD là hình vuông

SABCD=AB2=16AB=4cm=AD

Gọi E là trung điểm của ABOE là đường trung bình của tam giác ABD
OE//ADOEAB và OE=12AD=12.4=2cm

OEABSOAB(SO(ABCD))AB(SOE)ABSE

SΔSAB=12SE.AB=83SE=163AB=1634=43cm

SOABCDSOOEΔSOE vuông tại O

SO=SE2OE2=484=44=211cm

Vậy VS.ABCD=13SO.SABCD=13.211.16=32113cm3

Media VietJack

Đáp án cần chọn là: C

Lời giải

Media VietJack

Ta có:

ACABACSB(SB(ABC))AC(SAB)ACSA

SA là hình chiếu vuông góc của SC trên

SABSC;SAB^=SC;SA^=CSA^=300
(SAC)(ABC)=AC(SAC)SAAC(ABC)ABAC((SAC);(A^BC))=(SA;A^B)=SAB^=600

SBABCSBABΔSAB  vuông tại B

AB=SB.cot600=a.13=a33

SA=SB2+AB2=a2+a23=2a3

Xét tam giác vuông SAC ta có: AC=SA.tan300=2a3.13=2a3

SABC=12AB.AC=12a33.2a3=a239
VS.ABC=13SB.SABC=13.a.a239=a3327

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP