Câu hỏi:

02/08/2022 315

Cho tứ diện ABCD có thể tích bằng 18. Gọi A1 là trọng tâm của tam giác BCD(P) là mặt phẳng qua A sao cho góc giữa (P) và mặt phẳng (BCD) bằng 600. Các đường thẳng qua B,C,D song song với AA1 cắt (P) lần lượt tại B1,C1,D1. Thể tích khối tứ diện A1B1C1D1  bằng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Theo bài ra ta có A1 là trọng tâm tam giác BCD nên A cũng là trọng tâm ΔB1C1D1

Do đó VABCD=3VA.A1BC=3VB.AA1C và VA1B1C1D1=3VA1AB1C1=3VB1AA1C1

Mặt khác do quan hệ song song nên ta có: dB;AA1CC1=dB;AA1CC1 SΔAA1C=SΔAA1C1 nên suy ra VB.AA1C=VB1.AA1C1

Vậy VA1B1C1D1=VABCD=18

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O=ACBD.Vì chóp S.ABCD đều nên SOABCD

Vì chóp S.ABCD đều nên ABCD là hình vuông

SABCD=AB2=16AB=4cm=AD

Gọi E là trung điểm của ABOE là đường trung bình của tam giác ABD
OE//ADOEAB và OE=12AD=12.4=2cm

OEABSOAB(SO(ABCD))AB(SOE)ABSE

SΔSAB=12SE.AB=83SE=163AB=1634=43cm

SOABCDSOOEΔSOE vuông tại O

SO=SE2OE2=484=44=211cm

Vậy VS.ABCD=13SO.SABCD=13.211.16=32113cm3

Media VietJack

Đáp án cần chọn là: C

Lời giải

Media VietJack

Ta có:

ACABACSB(SB(ABC))AC(SAB)ACSA

SA là hình chiếu vuông góc của SC trên

SABSC;SAB^=SC;SA^=CSA^=300
(SAC)(ABC)=AC(SAC)SAAC(ABC)ABAC((SAC);(A^BC))=(SA;A^B)=SAB^=600

SBABCSBABΔSAB  vuông tại B

AB=SB.cot600=a.13=a33

SA=SB2+AB2=a2+a23=2a3

Xét tam giác vuông SAC ta có: AC=SA.tan300=2a3.13=2a3

SABC=12AB.AC=12a33.2a3=a239
VS.ABC=13SB.SABC=13.a.a239=a3327

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hình chóp S.ABC có AB=AC=4,BC=2,SA=43,SAB^=SAC^=300. Tính thể tích khối chóp S.ABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay