Câu hỏi:

26/07/2022 343

Cho hàm số y=16x473x2 có đồ thị hàm số (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt Mx1;y1,Nx2;y2  M,NA thỏa mãn y1y2=4(x1x2)? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi Ax0;y0C.

Khi đó tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt

Mx1;y1,Nx2;y2  M,NA có hệ số góc là: k=y1y2x1x2=4.

Mặt khác:

k=f'(x0)4=23x3143xx037x06=0

x0=2x0=1x0=3

Kiểm tra lại từng trường hợp x0=2;1;3 ta thấy trường hợp x0=3  thì tiếp tuyến chỉ có duy nhất 1 điểm chung với đồ thị nên loại.

Vậy có 2 giá trị của m thỏa mãn.

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Tiếp tuyến của đồ thị hàm số y=x332x2+x+2 song song với đường thẳng y=2x+5 có phương trình là:

Lời giải

Tiếp tuyến (d) song song với đường thẳng y=2x+5 nên có hệ số góc .

Suy ra y'=2 hay x24x+1=2x1x3=0

x=1,y=43x=3,y=4

Với x=1;y=43 thì d1:y=2x1+43 hay d1:y=2x+103
Với x=3;y=4 thì d2:y=2x34 hay d2:y=2x+2
Đáp án cần chọn là: A

Câu 2

Cho hàm số y=2x1x1   C Tìm điểm M thuộc (C) sao cho tiếp tuyến tại M và hai trục tọa độ tạo thành tam giác cân.

Lời giải

TXĐ: D=R1

Ta có: y'=1x12

Gọi Mxo;yo là điểm thuộc đồ thị hàm số (C). Khi đó phương trình tiếp tuyến của đồ thị hàm số (C) tại điểm M là:

 

Δ:  y=y'xoxxo+yo=1xo12xxo+2xo1xo1

Gọi AxA;0 là giao điểm của Δ và trục Ox;B0;yB  là giao điểm của Δ và trục Oy.

xA=2x022xo+1yB=2x022xo+1(xo1)2

Theo đề bài ta có tiếp tuyến tại M và hai trục tọa độ tạo thành tam giác cân

 tam giác OAB cân tại O

OA=OBxA=yB

2x022xo+1=2x022xo+1(xo1)2=0

2x022xo+1=011(xo1)2(xo1)2=0(xo1)2=1

x0=0tmx0=2tm

Khi đó ta có hai điểm M là: M(0;1) và M(2;3)

Đáp án cần chọn là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay