Câu hỏi:

02/08/2022 376

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD  thành hai phần, phần chứa đỉnh S có thể tích bằng 725 lần phần còn lại. Tính tỉ số IAIS?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử SCIMN=PIMNSAC=IP

Ta có: (IMN)(SAC)=IP(IMN)(ABCD)=MN(SAC)(ABCD)=ACIPMNAC
Trong (ABCD) gọi E=MNCD trong (SCD) gọi Q=NPSD

Khi đó thiết diện của hình chóp cắt bởi (MNI) là ngũ giác IMNPQ.

Gọi V1=VS.BMNPQI,  V=VS.ABCDtheo bài ra ta có V1=732V

Ta có V1=VS.BMN+VS.IMN+VS.INP+VS.IPQ

Đặt SISA=x   (0<x<1) áp dụng định lí Ta-lét ta có SISA=SPSC=x

- Xét khối chóp S.BMN và S.ABCD:

  + Có cùng chiều cao (cùng bằng khoảng cách từ SS đến (ABCD)).

SBMN=14SABC=18SABC(do tam giác BMN và tam giác BAC đồng dạng theo tỉ số 12)

Do đó VS.BMN=18VS.ABCD=18V

- Xét khối chóp S.IMN và S.AMN:

VS.INPVS.ANC=SISA.SPSC=x2VS.IMN=x2.VS.ANC

Ta có SANC=12SABC=14SABCDVS.ANC=14VVS.IMN=x24V

- Xét khối chóp S.IPQ và S.ACDVS.IPQVS.ACD=SISA.SPSC.SQSD

Ta có AMEC là hình bình hành nên EC=AM=12CDECED=13

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến EPQ ta có:

PSPC.ECED.QDQS=1x1x.13.QDQS=1
QDQS=31xxSQQD=x31xSQSQ+QD=xx+31xSQSD=x32x

Suy ra VS.IPQVS.ACD=SISA.SPSC.SQSD=x2.x32x=x332x

VS.IPQ=x332xVS.ACD

Mà SACD=12SABCDVS.ACD=12VVS.IPQ=x3232xV

Khi đó ta có:

V1=VS.BMN+VS.IMN+VS.INP+VS.IPQ
V1=18V+x8V+x24V+x32(32x)V
V1=18+x8+x24+x32(32x)V=732v
18+x8+x24+x32(32x)=732
1+x+2x24+x332x=716
(1+x+2x2).(128x)+16x3=7(32x)
12+12x+24x28x8x216x3+16x3=2114x
16x2+18x9=0x=38tmx=32ktm

SISA=38ISIA=35IAIS=53
Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết SB=a, SC hợp với (SAB) một góc 300 và (SAC) hợp với đáy (ABC) một góc 600. Thể tích khối chóp là:

Xem đáp án » 01/08/2022 2,921

Câu 2:

Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn SAABCD  AB=2AD=2CD=2a=2SA. Thể tích khối chóp S.BCD là:

Xem đáp án » 01/08/2022 2,236

Câu 3:

Cho hình chóp đều S.ABCD có diện tích đáy là 16cm2, diện tích một mặt bên là 83cm2. Thể tích khối chóp S.ABCD là:

Xem đáp án » 01/08/2022 2,134

Câu 4:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2, BAD=600, SA=SC  và tam giác SBD vuông cân tại S. Gọi E là trung điểm của SC. Mặt phẳng (P) qua AE và cắt hai cạnh SB,SD lần lượt tại M và N. Thể tích lớn nhất V0 của khối đa diện ABCDNEM bằng:

Xem đáp án » 02/08/2022 2,031

Câu 5:

Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a. Khoảng cách giữa hai đường thẳng SA và CD bằng a3. Thể tích khối chóp S.ABCD là:

Xem đáp án » 02/08/2022 1,943

Câu 6:

Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và có thể tích V=a336. Tìm số r>0 sao cho tồn tại điểm J nằm trong khối chóp mà khoảng cách từ J đến các mặt bên và mặt đáy đều bằng r?

Xem đáp án » 02/08/2022 1,162

Câu 7:

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên bằng a2. Xét điểm M thay đổi trên mặt phẳng SCD sao cho tổng Q=MA2+MB2+MC2+MD2+MS2  nhỏ nhất. Gọi V1 là thể tích của khối chóp S.ABCD và V2 là thể tích của khối chóp M.ACD. Tỉ số V2V1 bằng

Xem đáp án » 02/08/2022 954

Bình luận


Bình luận