Câu hỏi:

02/08/2022 397

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD  thành hai phần, phần chứa đỉnh S có thể tích bằng 725 lần phần còn lại. Tính tỉ số IAIS?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Giả sử SCIMN=PIMNSAC=IP

Ta có: (IMN)(SAC)=IP(IMN)(ABCD)=MN(SAC)(ABCD)=ACIPMNAC
Trong (ABCD) gọi E=MNCD trong (SCD) gọi Q=NPSD

Khi đó thiết diện của hình chóp cắt bởi (MNI) là ngũ giác IMNPQ.

Gọi V1=VS.BMNPQI,  V=VS.ABCDtheo bài ra ta có V1=732V

Ta có V1=VS.BMN+VS.IMN+VS.INP+VS.IPQ

Đặt SISA=x   (0<x<1) áp dụng định lí Ta-lét ta có SISA=SPSC=x

- Xét khối chóp S.BMN và S.ABCD:

  + Có cùng chiều cao (cùng bằng khoảng cách từ SS đến (ABCD)).

SBMN=14SABC=18SABC(do tam giác BMN và tam giác BAC đồng dạng theo tỉ số 12)

Do đó VS.BMN=18VS.ABCD=18V

- Xét khối chóp S.IMN và S.AMN:

VS.INPVS.ANC=SISA.SPSC=x2VS.IMN=x2.VS.ANC

Ta có SANC=12SABC=14SABCDVS.ANC=14VVS.IMN=x24V

- Xét khối chóp S.IPQ và S.ACDVS.IPQVS.ACD=SISA.SPSC.SQSD

Ta có AMEC là hình bình hành nên EC=AM=12CDECED=13

Áp dụng định lí Menelaus trong tam giác SCD với cát tuyến EPQ ta có:

PSPC.ECED.QDQS=1x1x.13.QDQS=1
QDQS=31xxSQQD=x31xSQSQ+QD=xx+31xSQSD=x32x

Suy ra VS.IPQVS.ACD=SISA.SPSC.SQSD=x2.x32x=x332x

VS.IPQ=x332xVS.ACD

Mà SACD=12SABCDVS.ACD=12VVS.IPQ=x3232xV

Khi đó ta có:

V1=VS.BMN+VS.IMN+VS.INP+VS.IPQ
V1=18V+x8V+x24V+x32(32x)V
V1=18+x8+x24+x32(32x)V=732v
18+x8+x24+x32(32x)=732
1+x+2x24+x332x=716
(1+x+2x2).(128x)+16x3=7(32x)
12+12x+24x28x8x216x3+16x3=2114x
16x2+18x9=0x=38tmx=32ktm

SISA=38ISIA=35IAIS=53
Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết SB=a, SC hợp với (SAB) một góc 300 và (SAC) hợp với đáy (ABC) một góc 600. Thể tích khối chóp là:

Xem đáp án » 01/08/2022 3,398

Câu 2:

Cho hình chóp đều S.ABCD có diện tích đáy là 16cm2, diện tích một mặt bên là 83cm2. Thể tích khối chóp S.ABCD là:

Xem đáp án » 01/08/2022 2,739

Câu 3:

Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn SAABCD  AB=2AD=2CD=2a=2SA. Thể tích khối chóp S.BCD là:

Xem đáp án » 01/08/2022 2,547

Câu 4:

Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a. Khoảng cách giữa hai đường thẳng SA và CD bằng a3. Thể tích khối chóp S.ABCD là:

Xem đáp án » 02/08/2022 2,194

Câu 5:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh bằng 2, BAD=600, SA=SC  và tam giác SBD vuông cân tại S. Gọi E là trung điểm của SC. Mặt phẳng (P) qua AE và cắt hai cạnh SB,SD lần lượt tại M và N. Thể tích lớn nhất V0 của khối đa diện ABCDNEM bằng:

Xem đáp án » 02/08/2022 2,124

Câu 6:

Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và có thể tích V=a336. Tìm số r>0 sao cho tồn tại điểm J nằm trong khối chóp mà khoảng cách từ J đến các mặt bên và mặt đáy đều bằng r?

Xem đáp án » 02/08/2022 1,203

Câu 7:

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên bằng a2. Xét điểm M thay đổi trên mặt phẳng SCD sao cho tổng Q=MA2+MB2+MC2+MD2+MS2  nhỏ nhất. Gọi V1 là thể tích của khối chóp S.ABCD và V2 là thể tích của khối chóp M.ACD. Tỉ số V2V1 bằng

Xem đáp án » 02/08/2022 1,111