Giải SGK Toán 12 CTST Bài tập cuối Chương 3 có đáp án
37 người thi tuần này 4.6 451 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Đáp án đúng là: A
Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 4,2 – 2,7 = 1,5 (km).
b) Đáp án đúng là: D
Cỡ mẫu n = 20.
Gọi x1; x2; …; x20 là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.
Ta có x1; x2; x3 ∈ [2,7; 3,0), x4; …; x9 ∈ [3,0; 3,3), x10; …; x14 ∈ [3,3; 3,6),
x15; …; x18 ∈ [3,6; 3,9), x19; x20 ∈ [3,9; 4,2).
Tứ phân vị thứ nhất của mẫu số liệu gốc là ∈ [3,0; 3,3).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là ∈ [3,6; 3,9).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 3,675 – 3,1 = 0,575.
c) Đáp án đúng là: C
Ta có bảng sau:
Quãng đường (km) |
[2,7; 3,0) |
[3,0; 3,3) |
[3,3; 3,6) |
[3,6; 3,9) |
[3,9; 4,2) |
Giá trị đại diện |
2,85 |
3,15 |
3,45 |
3,75 |
4,05 |
Số ngày |
3 |
6 |
5 |
4 |
2 |
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
S2 = [3 ∙ (2,85)2 + 6 ∙ (3,15)2 + 5 ∙ (3,45)2 + 4 ∙ (3,75)2 + 2 ∙ (4,05)2] – (3,39)2
= 0,1314.
d) Đáp án đúng là: D
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Lời giải
a) Đáp án đúng là: A
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 45 – 20 = 25 (phút).
b) Đáp án đúng là: D
Cỡ mẫu n = 6 + 6 + 4 + 1 + 1 = 18.
Gọi x1; x2; …; x18 là mẫu số liệu gốc về thời gian tập nhảy mỗi ngày của bạn Chi được xếp theo thứ tự không giảm.
Ta có x1; …; x6 ∈ [20; 25), x7; …; x12 ∈ [25; 30), x13; …; x16 ∈ [30; 35),
x17 ∈ [35; 40), x18 ∈ [40; 45).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x5 ∈ [20; 25).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là x14 ∈ [30; 35).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 31,875 – 23,75 = 8,125.
c) Đáp án đúng là: D
Ta có bảng sau:
Thời gian (phút) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
Giá trị đại diện |
22,5 |
27,5 |
32,5 |
37,5 |
42,5 |
Số ngày |
6 |
6 |
4 |
1 |
1 |
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
S2 = [6 ∙ (22,5)2 + 6 ∙ (27,5)2 + 4 ∙ (32,5)2 + 1 ∙ (37,5)2 + 1 ∙ (42,5)2] –
= 31,25.
Do đó, phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 31,44.
Lời giải
a) Đáp án đúng là: C
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 18 – 8 = 10 (giây).
b) Đáp án đúng là: C
Cỡ mẫu n = 25.
Gọi x1; x2; …; x25 là mẫu số liệu gốc về thời gian giải rubik trong 25 lần giải liên tiếp được xếp theo thứ tự không giảm.
Ta có x1; …; x4 ∈ [8; 10), x5; …; x10 ∈ [10; 12), x11; …; x18 ∈ [12; 14),
x19; …; x22 ∈ [14; 16), x23; …; x25 ∈ [16; 18).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (x6 + x7) ∈ [10; 12).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là (x19 + x20) ∈ [14; 16).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 14,375 – 10,75 = 3,625 ≈ 3,63.
c) Đáp án đúng là: C
Ta có bảng sau:
Thời gian giải rubik (giây) |
[8; 10) |
[10; 12) |
[12; 14) |
[14; 16) |
[16; 18) |
Giá trị đại điện |
9 |
11 |
13 |
15 |
17 |
Số lần |
4 |
6 |
8 |
4 |
3 |
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
S2 = (4 ∙ 92 + 6 ∙ 112 + 8 ∙ 132 + 4 ∙ 152 + 3 ∙ 172) – (12,68)2 = 5,9776.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Lời giải
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 300 – 50 = 250 (km).
Cỡ mẫu n = 5 + 10 + 9 + 4 + 2 = 30.
Gọi x1; x2; …; x30 là mẫu số liệu gốc về độ dài quãng đường bác tài xế đã lái xe mỗi ngày trong một tháng được xếp theo thứ tự không giảm.
Ta có x1; …; x5 ∈ [50; 100), x6; …; x15 ∈ [100; 150), x16; …; x24 ∈ [150; 200),
x25; …; x28 ∈ [200; 250), x29; x30 ∈ [250; 300).
Tứ phân vị thứ nhất của mẫu số liệu gốc là x8 ∈ [100; 150).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là x23 ∈ [150; 200).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = – 112,5 = ≈ 79,17.
Ta có bảng sau:
Độ dài quãng đường (km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
Giá trị đại diện |
75 |
125 |
175 |
225 |
275 |
Số ngày |
5 |
10 |
9 |
4 |
2 |
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
S2 = (5 ∙ 752 + 10 ∙ 1252 + 9 ∙ 1752 + 4 ∙ 2252 + 2 ∙ 2752) – 1552 = 3 100.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Lời giải
a) Số thửa ruộng được khảo sát là: n = 3 + 4 + 6 + 5 + 5 + 2 = 25.
b) Từ biểu đồ, ta có bảng tần số ghép nhóm của mẫu số liệu như sau:
Năng suất (tấn/ha) |
[5,5; 5,7) |
[5,7; 5,9) |
[5,9; 6,1) |
[6,1; 6,3) |
[6,3; 6,5) |
[6,5; 6,7) |
Số thửa ruộng |
3 |
4 |
6 |
5 |
5 |
2 |
Bảng tần số tương đối ghép nhóm của mẫu số liệu:
Giá trị đại diện (tấn/ha) |
5,6 |
5,8 |
6,0 |
6,2 |
6,4 |
6,6 |
Tần số tương đối |
3 |
4 |
6 |
5 |
5 |
2 |
c) Khoảng biến thiên của mẫu số liệu đã cho là:
R = 6,7 – 5,5 = 1,2 (tấn/ha).
Cỡ mẫu n = 25.
Gọi x1; x2; …; x25 là mẫu số liệu gốc về năng suất của một số thửa ruộng được khảo sát được xếp theo thứ tự không giảm.
Ta có x1; x2; x3 ∈ [5,5; 5,7), x4; …; x7 ∈ [5,7; 5,9), x8; …; x13 ∈ [5,9; 6,1),
x13; …; x18 ∈ [6,1; 6,3), x19; …; x23 ∈ [6,3; 6,5), x24; x25 ∈ [6,5; 6,7).
Tứ phân vị thứ nhất của mẫu số liệu gốc là (x6 + x7) ∈ [5,7; 5,9).
Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: .
Tứ phân vị thứ ba của mẫu số liệu gốc là (x19 + x20) ∈ [6,3; 6,5).
Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
∆Q = Q3 – Q1 = 6,33 – 5,8625 = 0,4675.
Số trung bình của mẫu số liệu ghép nhóm là: .
Phương sai của mẫu số liệu ghép nhóm là:
S2 = [3 ∙ (5,6)2 + 4 ∙ (5,8)2 + 6 ∙ (6,0)2 + 5 ∙ (6,2)2 + 5 ∙ (6,4)2 + 2 ∙ (6,6)2] – (6,088)2
= 0,086656.
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
90 Đánh giá
50%
40%
0%
0%
0%