Câu hỏi:
13/07/2024 1,208Cho hình lăng trụ ABC.A′B′C′ có tam giác ABC vuông tại A, AB=a, \(AC = a\sqrt 3 {\rm{,AA}}' = 2a\). Hình chiếu vuông góc của điểm A trên mặt phẳng (A′B′C′) trùng với trung điểm H của đoạn B′C′ (tham khảo hình vẽ dưới đây). Khoảng cách giữa hai đường thẳng AA′ và BC′ bằng \(\frac{{a\sqrt m }}{5}\). Tìm m.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1:
Ta có\[AA'//BB' \Rightarrow AA'//\left( {BCC'B'} \right) \supset BC'\]
\[ \Rightarrow d\left( {AA';BC'} \right) = d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {A;\left( {BCC'B'} \right)} \right)\]
Bước 2:
Trong (ABC) kẻ \[AK \bot BC\,\,\left( {K \in BC} \right)\] trong (AHK) kẻ \[AI \bot HK\,\,\left( {I \in HK} \right)\] ta có:
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{BC \bot AK}\\{BC \bot AH}\end{array} \Rightarrow BC \bot (AHK) \Rightarrow BC \bot AI} \right.\\\left\{ {\begin{array}{*{20}{c}}{AI \bot HK}\\{AI \bot BC}\end{array}} \right. \Rightarrow AI \bot (BCC\prime B\prime )\end{array}\)
\[ \Rightarrow d\left( {A;\left( {BCC'B'} \right)} \right) = AI = d\left( {AA';BC'} \right)\]
Bước 3:
Áp dụng hệ thức lượng trong tam giác vuông ABC ta có
\[AK = \frac{{AB.AC}}{{\sqrt {A{B^2} + A{C^2}} }} = \frac{{a.a\sqrt 3 }}{{\sqrt {{a^2} + 3{a^2}} }} = \frac{{a\sqrt 3 }}{2}\]
Tam giác A′B′C′ có \[B'C' = \sqrt {A'{B^{\prime 2}} + A'{C^{\prime 2}}} = 2a \Rightarrow A'H = \frac{1}{2}B'C' = a\]
\[ \Rightarrow AH = \sqrt {A{A^{\prime 2}} - A'{H^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \]
Áp dụng hệ thức lượng trong tam giác vuông AHK ta có
\[AI = \frac{{AH.AK}}{{\sqrt {A{H^2} + A{K^2}} }} = \frac{{a\sqrt 3 .\frac{{a\sqrt 3 }}{2}}}{{\sqrt {3{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {15} }}{5}\]
Vậy\[d\left( {AA';BC'} \right) = \frac{{a\sqrt {15} }}{5}\]
Vậy m=15.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên SA=2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là trung điểm của H của đoạn thẳng AO. Tính khoảng cách d giữa các đường thẳng SD và AB.
Câu 2:
Cho tứ diện đều ABCD có cạnh bằng 2a. Khoảng cách giữa hai đường thẳng AB và CD là
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với mặt phẳng đáy góc 450. Khoảng cách giữa hai đường thẳng SB và AC là
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh aa. Cạnh bên SA vuông góc với mặt phẳng đáy. Biết góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Tính khoảng cách giữa hai đường thẳng BD và SC.
Câu 5:
Cho hình lăng trụ ABC.A′B′C′ có đáy ABC là tam giác vuông cân, AC=BC=3a. Hình chiếu vuông góc của B′ lên mặt đáy trùng với trọng tâm của tam giác ABC, mặt phẳng (ABB′A′) tạo với mặt phẳng (ABC) một góc 600. Tính khoảng cách giữa hai đường thẳng AB và B′C.
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=3a, BC=4a. Cạnh bên SA vuông góc với đáy. Góc tạo bởi giữa SC và đáy bằng 600. Gọi M là trung điểm của AC, tính khoảng cách dd giữa hai đường thẳng AB và SM.
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, gọi I là trung điểm của AB. Hình chiếu vuông góc của S trên mặt đáy là trung điểm của CI. Biết chiều cao của khối chóp là \(a\sqrt 3 \). Khoảng cách giữa hai đường thẳng AB và SC là :
về câu hỏi!