Câu hỏi:

27/06/2022 4,396

Cho hình chóp S.ABC có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABC có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đườ (ảnh 1)

Gọi\[E = HK \cap AC.\]  Do \[HK\parallel BD\] nên suy ra\[d\left( {HK;SD} \right) = d\left( {HK;\left( {SBD} \right)} \right) = d\left( {E;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A;\left( {SBD} \right)} \right)\]

(vì \[OE = \frac{1}{2}AO\])

Kẻ \[AF \bot SO\,\,\left( 1 \right)\] ta có:

\(\left\{ {\begin{array}{*{20}{c}}{BD \bot AC}\\{BD \bot SA}\end{array}} \right. \Rightarrow BD \bot (SAC) \Rightarrow BD \bot AF(2)\)

Từ (1) và (2) \[ \Rightarrow AF \bot \left( {SBD} \right)\] khi đó\[d\left( {A;\left( {SBD} \right)} \right) = AF = \frac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} = \frac{{2a.\frac{{a\sqrt 2 }}{2}}}{{\sqrt {4{a^2} + \frac{{{a^2}}}{2}} }} = \frac{{2a}}{3}.\]

Vậy khoảng cách\[d\left( {HK;SD} \right) = \frac{1}{2}AF = \frac{a}{3}.\]

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện đều ABCD có cạnh bằng 2a. Khoảng cách giữa hai đường thẳng AB và CD là (ảnh 1)

Bước 1: Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh MN là đoạn vuông góc chung của AB và CD.

Gọi M, N lần lượt là trung điểm của AB và CD. 

\[{\rm{\Delta }}BCD,{\rm{\Delta }}ACD\] đều nên:

\(\left. {\begin{array}{*{20}{c}}{AN \bot CD}\\{BN \bot CD}\end{array}} \right\} \Rightarrow (ABN) \bot CD \Rightarrow MN \bot CD\)

Tương tự ta có \[MN \bot AB\]

Khoảng cách giữa 2 đường thẳng AB, CD là độ dài của MN.

Bước 2: Tính MN.

\[{\rm{\Delta }}ACD\] đều cạnh 2a; AN là đường cao.

\[ \to AN = AC.\frac{{\sqrt 3 }}{2} = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]

\[AM = \frac{1}{2}AB = a\]

\[{\rm{\Delta }}AMN\] vuông tại M\[MN \bot AB\]  nên:

\[MN = \sqrt {A{N^2} - A{M^2}} = \sqrt {3{a^2} - {a^2}} = a\sqrt 2 \]

Đáp án cần chọn là: B

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên SA=2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là trung điểm của H của đoạn thẳng AO. Tính khoảng cá (ảnh 1)

Do \[AB\parallel CD\] nên\[d\left( {SD;AB} \right) = d\left( {AB;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right) = \frac{4}{3}d\left( {H;\left( {SCD} \right)} \right).\]

(Do\[AH \cap \left( {SCD} \right) = C \Rightarrow \frac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {H;\left( {SCD} \right)} \right)}} = \frac{{AC}}{{HC}} = \frac{4}{3}\]

\[ \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = \frac{4}{3}d\left( {H;\left( {SCD} \right)} \right)\]

Kẻ\[HE \bot CD\], kẻ\[HL \bot SE\,\,\left( 1 \right)\] ta có:

\(\left\{ {\begin{array}{*{20}{c}}{CD \bot SH}\\{CD \bot HE}\end{array}} \right. \Rightarrow CD \bot (SHE) \Rightarrow CD \bot HL(2)\)

Từ (1) và (2) \[ \Rightarrow HL \bot \left( {SCD} \right)\]

\[ \Rightarrow d\left( {H;\left( {SCD} \right)} \right) = HL\]

Tính được\[SH = \sqrt {S{A^2} - A{H^2}} = a\sqrt 2 ,HE = \frac{3}{4}AD = 3a.\]

Khi đó\[d\left( {H;\left( {SCD} \right)} \right) = HL = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{3a\sqrt 2 }}{{\sqrt {11} }}.\]

Vậy\[d\left( {SD;AB} \right) = \frac{4}{3}HL = \frac{{4a\sqrt {22} }}{{11}}.\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay