Câu hỏi:
27/06/2022 2,740Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB=2a,AD=DC=a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
\(\left\{ {\begin{array}{*{20}{c}}{(SAB) \bot (ABCD)}\\{(SAD) \bot (ABCD)}\\{(SAB) \cap (SAD) = SA}\end{array}} \right. \Rightarrow SA \bot (ABCD)\)
Xác định
\[{60^0} = \widehat {\left( {SC;\left( {ABCD} \right)} \right)}\]
\[ = \widehat {\left( {SC;AC} \right)} = \widehat {SCA}\]
và \[SA = AC.\tan \widehat {SCA} = \sqrt {A{D^2} + C{D^2}} .\tan {60^0} = a\sqrt 2 .\sqrt 3 = a\sqrt 6 .\]
Gọi M là trung điểm AB, suy ra ADCM là hình vuông nên CM=AD=a.
Xét tam giác ACB, ta có trung tuyến\[CM = a = \frac{1}{2}AB\] nên tam giác ACB vuông tại C.
Lấy điểm E sao cho ACBE là hình chữ nhật, suy ra \[AC\parallel BE\] và E nằm trong (ABCD).
Do đó \[d\left( {AC;SB} \right) = d\left( {AC;\left( {SBE} \right)} \right) = d\left( {A;\left( {SBE} \right)} \right)\]
Kẻ \[AK \bot SE\,\,\,\left( 1 \right)\] ta có:\(\left\{ {\begin{array}{*{20}{c}}{BE \bot AE}\\{BE \bot SA}\end{array}} \right. \Rightarrow BE \bot (SAE) \Rightarrow BE \bot AK(2)\)
Từ (1) và (2) \[ \Rightarrow AK \bot \left( {SBE} \right)\]
Khi đó \[d\left( {A,\left( {SBE} \right)} \right) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }}.\]
Ta có:\[AE = BC = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \Rightarrow AK = \frac{{a\sqrt 6 .a\sqrt 2 }}{{\sqrt {6{a^2} + 2{a^2}} }} = \frac{{a\sqrt 6 }}{2}\]
Đáp án cần chọn là: A
Đã bán 1,4k
Đã bán 851
Đã bán 902
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện đều ABCD có cạnh bằng 2a. Khoảng cách giữa hai đường thẳng AB và CD là
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên SA=2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là trung điểm của H của đoạn thẳng AO. Tính khoảng cách d giữa các đường thẳng SD và AB.
Câu 3:
Cho hình chóp S.ABC có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA=2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Câu 4:
Cho hình lăng trụ ABC.A′B′C′ có đáy ABC là tam giác vuông cân, AC=BC=3a. Hình chiếu vuông góc của B′ lên mặt đáy trùng với trọng tâm của tam giác ABC, mặt phẳng (ABB′A′) tạo với mặt phẳng (ABC) một góc 600. Tính khoảng cách giữa hai đường thẳng AB và B′C.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh aa. Cạnh bên SA vuông góc với mặt phẳng đáy. Biết góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Tính khoảng cách giữa hai đường thẳng BD và SC.
Câu 6:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, gọi I là trung điểm của AB. Hình chiếu vuông góc của S trên mặt đáy là trung điểm của CI. Biết chiều cao của khối chóp là \(a\sqrt 3 \). Khoảng cách giữa hai đường thẳng AB và SC là :
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận