Câu hỏi:
27/06/2022 1,927Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \(\widehat {SBD} = {60^ \circ }\). Tính khoảng cách d giữa hai đường thẳng AB và SO.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có\[{\rm{\Delta }}\,SAB = {\rm{\Delta }}\,SAD\left( {c - g - c} \right)\] suy ra\[SB = SD\]
Mà\[\widehat {SBD} = {60^0} \Rightarrow {\rm{\Delta }}\,SBD\] đều cạnh\[SB = SD = BD = a\sqrt 2 \]
Tam giác vuông SAB, có\[SA = \sqrt {S{B^2} - A{B^2}} = a\]
Gọi E là trung điểm AD, suy ra\[OE\parallel AB\] và \[AE \bot OE\]
Do đó\[d\left( {AB;SO} \right) = d\left( {AB;\left( {SOE} \right)} \right) = d\left( {A;\left( {SOE} \right)} \right).\]
Kẻ\[AK \bot SE\,\,\,\left( 1 \right)\] ta có:
\(\left\{ {\begin{array}{*{20}{c}}{OE \bot AD}\\{OE \bot SA}\end{array}} \right. \Rightarrow OE \bot (SAD) \Rightarrow OE \bot AK(2)\)
Từ (1) và (2) \[ \Rightarrow AK \bot \left( {SOE} \right)\]
\[ \Rightarrow d\left( {A;\left( {SOE} \right)} \right) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện đều ABCD có cạnh bằng 2a. Khoảng cách giữa hai đường thẳng AB và CD là
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên SA=2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là trung điểm của H của đoạn thẳng AO. Tính khoảng cách d giữa các đường thẳng SD và AB.
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với mặt phẳng đáy góc 450. Khoảng cách giữa hai đường thẳng SB và AC là
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh aa. Cạnh bên SA vuông góc với mặt phẳng đáy. Biết góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 600. Tính khoảng cách giữa hai đường thẳng BD và SC.
Câu 5:
Cho hình lăng trụ ABC.A′B′C′ có đáy ABC là tam giác vuông cân, AC=BC=3a. Hình chiếu vuông góc của B′ lên mặt đáy trùng với trọng tâm của tam giác ABC, mặt phẳng (ABB′A′) tạo với mặt phẳng (ABC) một góc 600. Tính khoảng cách giữa hai đường thẳng AB và B′C.
Câu 6:
Cho hình lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A′A′ lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng cách d giữa hai đường thẳng BB′ và A′H.
Câu 7:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, gọi I là trung điểm của AB. Hình chiếu vuông góc của S trên mặt đáy là trung điểm của CI. Biết chiều cao của khối chóp là \(a\sqrt 3 \). Khoảng cách giữa hai đường thẳng AB và SC là :
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
về câu hỏi!