Cho hàm số với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.
Cho hàm số với m là tham số thực. Tìm giá trị của mm để đồ thị hàm số có hai điểm cực trị thỏa mãn khoảng cách từ chúng đến trục tung bằng nhau.
Quảng cáo
Trả lời:
Ta có
Do nên hàm số luôn có hai điểm cực trị với là hai nghiệm của phương trình .
Theo định lí Viet, ta có
Gọi và là hai điểm cực trị của đồ thị hàm số.
Yêu cầu bài toán (do )
Đáp án cần chọn là: D
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Bước 1:
Số điểm cực trị của hàm số là trong đó m là số điềm cực trị dương của hàm số
Do đó để hàm số có đúng 3 điểm cực trị thì m=1⇒ hàm số phải có 1 điểm cực trị dương (*).
Bước 2:
Ta có:
Xét có nên có 2 nghiệm phân biệt
Bước 3:
Mà
Vậy có 4 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: C
Lời giải
ĐKXĐ:
Ta có:
Khi đó, giả sử là nghiệm phân biệt của phương trình , áp dụng định lí Vi-ét ta có
Đặt là hai điểm cực trị của hàm số.
Để tam giác OAB vuông tại O thì
Vậy tổng tất cả các phần tử của S là 9.
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.