Giải SBT Toán 12 Chân trời sáng tạo Bài 1. Vectơ và các phép toán trong không gian có đáp án
85 người thi tuần này 4.6 570 lượt thi 9 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Các vectơ có điểm đầu là B và điểm cuối là các đỉnh của hình hộp không cùng nằm trên một mặt của hình hộp với điểm B là: \(\overrightarrow {BD'} \).
b) Các vectơ bằng vectơ \(\overrightarrow {BC} \) là \(\overrightarrow {AD} ,\overrightarrow {A'D'} ,\overrightarrow {B'C'} \).
c) Các vectơ đối của vectơ \(\overrightarrow {BD} \) là \(\overrightarrow {DB} ,\overrightarrow {D'B'} \).
Lời giải
a) Ta có: \(\overrightarrow {OA} + \overrightarrow {AB} - \overrightarrow {OC} \) = \(\overrightarrow {OB} - \overrightarrow {OC} = \overrightarrow {CB} \).
b) Dựng hình hộp OADB.CFEK

Ta có: \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \) = \(\overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} \).
Lời giải
Gọi \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) lần lượt là ba lực tác động vào một vật đặt tại điểm O như Hình 2.
Ta có: \(\overrightarrow {{F_1}} = \overrightarrow {OA} \), \(\overrightarrow {{F_2}} = \overrightarrow {OB} \), \(\overrightarrow {{F_3}} = \overrightarrow {OC} \).
Độ lớn các lực: F1 = OA = 10 N, F2 = OB = 8 N, F3 = OC = 6 N.
Dựng hình bình hành OADB. Theo quy tắc hình bình hành, ta có: \(\overrightarrow {OD} = \overrightarrow {OA} + \overrightarrow {OB} \).
Suy ra \({\overrightarrow {OD} ^2} = {\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)^2} = {\overrightarrow {OA} ^2} + {\overrightarrow {OB} ^2} + 2\overrightarrow {OA} .\overrightarrow {OB} \)
Mà \(\overrightarrow {OA} .\overrightarrow {OB} \) = OA.OB.cos\(\left( {\overrightarrow {OA} ,\overrightarrow {OB} } \right)\)
⇒ OD2 = OA2 + OB2 + 2OA.OB.cos120°.
Dựng hình bình hành ODEC.
Tổng lực tác động vào vật là \(\overrightarrow F = \overrightarrow {OE} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} \).
Độ lớn của hợp lực tác động vào vật là F = OE.
Vì \(OC \bot \left( {OADB} \right)\) nên OC ⊥ OD, suy ra ODEC là hình chữ nhật.
Do đó, tam giác ODE vuông tại D.
Khi đó, OE2 = OC2 + OD2 = OC2 + OA2 + OB2 + 2OA.OB.cos120°.
Suy ra OE = \(\sqrt {O{C^2} + O{A^2} + O{B^2} + 2.OA.OB\cos 120^\circ } \)
= \(\sqrt {{6^2} + {{10}^2} + {8^2} + 2.10.8.\cos 120^\circ } \) ≈ 10,95.
Do đó, F = OE ≈ 10,95 N.
Lời giải
a) Theo quy tắc hình hộp, ta có: \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \) = \(\overrightarrow {AC'} \).
Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right| = \left| {\overrightarrow {AC'} } \right|\) = AC' = 2AO = 2a.
b) Ta có: \(\overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \) = \(\overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {C'C} = \overrightarrow {C'A} \)
Suy ra \(\left| {\overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} } \right| = \left| {\overrightarrow {C'A} } \right| = C'A = 2a\).
Lời giải
a) Ta có: \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \) = \(\left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right)\) = \(2\overrightarrow {OO'} + 2\overrightarrow {OO'} \) = \(4\overrightarrow {OO'} \).
b) Ta có bốn đường chéo của hình lập phương cắt nhau tại trung điểm I của mỗi đường chéo nên I cũng là trung điểm của DB'. Suy ra \(\overrightarrow {DB} + \overrightarrow {DD'} = \overrightarrow {DB'} = 2\overrightarrow {DI} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



