Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
1202 lượt thi câu hỏi
1170 lượt thi
Thi ngay
1160 lượt thi
1146 lượt thi
1013 lượt thi
1004 lượt thi
1318 lượt thi
692 lượt thi
1033 lượt thi
1026 lượt thi
680 lượt thi
Câu 1:
- Nếu một cạnh và hai góc kề nhau của tam giác này bằng ………. và ………. của tam giác kia thì hai tam giác đó bằng nhau.
Nếu \(\widehat A\) = \(\widehat {A'}\), AB = A’B’, \(\widehat B\) = \(\widehat {B'}\) thì ∆ABC = ∆A’B’C’ (g.c.g) (Hình 40).
Nếu một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác vuông này bằng …………. và ………………kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
- Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng ………. và ………… của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Nhận xét
+ Nếu một điểm nằm trên tia phân giác của một góc thì …….. hai cạnh đó
+ Nếu một điểm nằm trong một góc và ………..……. hai cạnh của góc thì nằm trên tia phân giác của góc đó.
Câu 2:
Cho hai tam giác ABC và A’B’C’ thoả mãn: BC = B’C’ = 3 cm, \(\widehat B\) = \(\widehat {B'}\) = 60o, \(\widehat C\) = 50o, \(\widehat {A'}\) = 70o. Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?
Câu 3:
Có ba trạm quan sát A, B, C, trong đó trạm quan sát C ở giữa hồ. Người ta muốn đo khoảng cách từ A và từ B đến C. Do không thể đo trực tiếp được khoảng cách trên nên người ta làm như sau (Hình 42):
- Đo góc BAC được 60o, đo góc ABC được 45o.
- Kẻ tia Ax sao cho \(\widehat {{\rm{BAx}}}\) = 60o, kẻ tia By sao cho \(\widehat {ABy}\) = 45o, xác định giao điểm D của hai tia đó.
- Đo khoảng cách AD và BD. Ta có AC = AD và BC = BD.
Em hãy giải thích cách làm đó.
Câu 4:
Cho hai tam giác ABC và A’B’C’ thoả mãn: AB = A’B’, \(\widehat A\) = \(\widehat {A'}\), \(\widehat C\) = \(\widehat {C'}\). Hai tam giác ABC và A’B’C’ có bằng nhau không? Vì sao?
Câu 5:
Cho Hình 43 có AM = BN, \(\widehat A\) = \(\widehat B\). Chứng minh OA = OB và OM = ON.
Câu 6:
Cho Hình 44 có \(\widehat N\) = \(\widehat P\) = 90o, \(\widehat {PMQ}\) = \(\widehat {NQM}\). Chứng minh: MN = QP, MP = QN.
Câu 7:
Cho Hình 45 có \(\widehat {AHD}\) = \(\widehat {BKC}\) = 90o, DH = CK, \(\widehat {DAB}\) = \(\widehat {CBA}\). Chứng minh AD = BC.
Câu 8:
Cho tam giác ABC có \(\widehat B\) > \(\widehat C\). Tia phân giác góc BAC cắt BC tại điểm D.
Chứng minh \(\widehat {ADB}\) < \(\widehat {ADC}\)
Câu 9:
Kẻ tia Dx nằm trong góc ADC sao cho \(\widehat {ADx}\) = \(\widehat {ADB}\). Giả sử tia Dx cắt cạnh AC tại điểm E. Chứng minh ∆ABD = ∆AED, AB < AC.
Câu 10:
Cho ∆ABC = ∆MNP. Tia phân giác của góc BAC và NMP lầm lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ
Câu 11:
Cho Hình 48 có AB // CD, AD // BC. Chứng minh AB = CD, AD = BC
Câu 12:
Trong Hình 49 có \(\widehat {ACB}\) = \(\widehat {ADB}\) = 90o, \(\widehat {BAC}\) = \(\widehat {BAD}\). Chứng minh:
BC = BD, AC = AD;
Câu 13:
OC = OD và OA vuông góc với CD.
240 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com