Danh sách câu hỏi
Có 15,568 câu hỏi trên 312 trang
Cho hệ phương trình \[\left\{ \begin{array}{l}x + y = 5\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\2x + y = - 3\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right..\] Khi giải hệ phương trình bằng phương pháp cộng đại số, để được phương trình bậc nhất một ẩn, cách đơn giản nhất là
1) Một thửa đất có dạng hình chữ nhật, chiều dài hơn chiều rộng 19 m và diện tích bằng \(150\,\,\;{{\rm{m}}^2}.\) Người ta dự định xây bức tường bao quanh thửa đất, xây theo chu vi của thửa đất, trừ 5 m của phần cổng. Biết giá tất cả các chi phí xây bức tường được tính với mỗi mét theo chu vi là 2 triệu đồng. Tính số tiền dự định xây bức tường đó.
2) Cho biểu thức \(P = \frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{{\sqrt x }}{{\sqrt x + 1}} - \frac{2}{{x - 1}}\) (với \(0 \le x \ne 1).\)
Rút gọn biểu thức \(P\) và tìm \(x\) để \(P\) nhận giá trị nguyên.
3) Tháp nghiêng ở thành phố Pisa, Italia nghiêng khoảng \(4^\circ \) so với phương thẳng đứng. Người ta gắn ở mặt ngoài của tháp hai thiết bị tại hai vị trí \(A,\,\,B\) và nối với nhau bởi dây truyền tín hiệu. Tính gần đúng độ dài nhỏ nhất của dây đó, biết \(HB\) gần bằng \(3,146\,\,\;{\rm{m,}}\) với \(H\) là hình chiếu vuông góc của \(A\) trên mặt đất (xem hình trên). Kết quả làm tròn đến hàng phần trăm.
1) Lập bảng tần số tương đối của mẫu dữ liệu thống kê năm chữ cái \[b,\,\,n,\,\,o,\,\,t,\,\,v\] trong câu “Học hành vất vả kết quả ngọt bùi”.
2) Chứng minh phương trình \({x^2} + 7x + 5 = 0\) có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) và tính giá trị của biểu thức \(M = x_1^2 + x_2^2 - 6{x_1}{x_2}.\)
Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có đường cao \[AD\] và đường phân giác trong \[AO\] \[\left( {D,O} \right.\] thuộc cạnh \[\left. {BC} \right).\] Kẻ \[OM\] vuông góc với \[AB\] tại \[M,\,\,ON\] vuông góc với \[AC\] tại \[N.\]
1) Chứng minh bốn điểm \[D,M,N,O\] cùng nằm trên một đường tròn.
2) Chứng minh \(OM = ON\) và \[\widehat {BDM} = \widehat {ODN}.\]
3) Qua \[O,\] kẻ đường thẳng vuông góc với \[BC\] cắt \[MN\] tại \[I,\,\,AI\] cắt \[BC\] tại \[K.\] Chứng minh \[K\] là trung điểm của \[BC.\]
1) Bảng A của một giải Bóng đá gồm 4 đội bóng tham gia thi đấu, hai đội bóng bất kì thi đấu với nhau đúng một trận. Mỗi trận đấu, đội thua được 0 điểm, đội thắng được 3 điểm, hai đội hòa nhau mỗi đội được 1 điểm; số điểm của mỗi trận đấu bằng tổng số điểm của hai đội bóng tham gia trận đấu đó. Biết rằng tổng số điểm của tất cả các trận đấu bằng 16 điểm. Tính số trận hòa và số trận thắng (trận đấu có đội thắng, đội thua) của Bảng A.
2) Một túi đựng 4 viên bi có cùng khối lượng và kích thước, được đánh số \[1\,;\,\,2\,;\,\,3\,;\,\,4.\] Lấy ngẫu nhiên lần lượt 2 viên bi từ túi đó, viên bi lấy ra lần đầu không trả lại vào túi. Mô tả không gian mẫu của phép thử và tính xác suất để lấy được 2 viên bi mà tổng hai số trên hai viên bi đó là số lẻ.
Cho đường tròn \[\left( {O\,;\,\,3\,{\rm{cm}}} \right)\] và hai điểm \[A,\,\,B\] thỏa mãn \[OA = 3\,{\rm{cm,}}\,\,OB = 4\,{\rm{cm}}{\rm{.}}\]Khẳng định nào sau đây đúng?
Người ta muốn dựng một khung cổng hình vuông \[ABCD\] có độ dài cạnh bằng \[3{\rm{ cm}}\] được bao bởi một khung thép có dạng nửa đường tròn tâm \(F\) bán kính \[FA\] (như hình 3).
a) Độ dài đoạn thẳng \[OA\] là \(1,5\sqrt 2 \;\,{\rm{m}}\).
b) Độ dài đoạn thẳng \(HG = 3\sqrt 5 \;\,{\rm{m}}\).
c) Độ dài cung \[GAH\] là \(3\sqrt 5 \pi \,\,{\rm{m}}\).
d) Người ta muốn sơn toàn bộ nửa hình tròn (không sơn phần cổng \[ABCD).\] Giá tiền sơn \(30\,\,000\) đồng\({\rm{/}}{{\rm{m}}^{\rm{2}}}{\rm{.}}\) Biết \(\pi = 3,14\) kết quả làm tròn đến nghìn đồng. Số tiền sơn là \[1\,\,059\] (nghìn đồng).
Một chiếc áo có giá niêm yết là \[120\,\,000\] đồng. Để thanh lí chiếc áo, đầu tiên người ta giảm giá \(x\% \) so với giá niêm yết. Do vẫn chưa bán được chiếc áo nên người ta tiếp tục giảm giá \(x\% \) so với giá vừa được giảm. Sau hai đợt giảm giá, giá của chiếc áo còn \[76\,\,800\] đồng.
a) Giá của chiếc áo sau lần giảm giá thứ nhất là: \(120\,\,000 - 1200x\) (đồng).
b) Giá của chiếc áo sau hai lần giảm giá là: \(12{x^2} - 2\,\,400x + 120\,\,000\) (đồng).
c) Theo bài, sau hai đợt giảm giá, giá của chiếc áo còn \[76\,\,800\] đồng nên ta có phương trình \({x^2} - 200x + 3\,\,600 = 0\).
d) \(x = 180\).
Một trường trung học cơ sở mua 500 quyển vở bao gồm \(x\) quyển vở loại thứ nhất và \(y\) quyển vở loại thứ hai \(\left( {x,y \in \mathbb{N}*} \right)\) để làm phần thưởng cho học sinh. Giá bán của mỗi quyển vở loại thứ nhất, loại thứ hai lần lượt là \[8\,\,000\] đồng và \[9\,\,000\] đồng. Biết tổng số tiền nhà trường đã dùng để mua 500 quyển vở đó là \[4\,\,200\,\,000\] đồng. Mỗi học sinh Xuất sắc được thưởng 02 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai; mỗi học sinh Giỏi được thưởng 01 quyển vở loại thứ nhất và 01 quyển vở loại thứ hai; các học sinh khác không được thưởng và số học sinh này chiếm \(40\% \) tổng số học sinh cả trường.
a) \(x + y = 500\).
b) \(9x + 8y = 4\,\,200\,\,000\).
c) \(x = 300;y = 200\).
d) Tổng số học sinh của trường trung học cơ sở đó là 600 học sinh.
Từ điểm \(M\) nằm ngoài đường tròn tâm \(O\), kẻ hai tiếp tuyến \[MA,{\rm{ }}MB\] \[\left( {A,\,\,B} \right.\] là các tiếp điểm). Nếu \(AM = 4\,\,{\rm{cm}}\,{\rm{;}}\,\,\widehat {AMB} = 60^\circ \) thì