Bộ 5 đề thi giữa kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
4 người thi tuần này 4.6 22 lượt thi 8 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Bộ 10 đề thi giữa kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 1
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) \[\left( {2x + 9} \right)\left( {\frac{2}{3}x - 5} \right) = 0\]
\(2x + 9 = 0\) hoặc \[\frac{2}{3}x - 5 = 0\]
\(2x = - 9\) hoặc \(\frac{2}{3}x = 5\)
\(x = - \frac{9}{2}\) hoặc \(x = \frac{{15}}{2}\).
Vậy phương trình đã cho có hai nghiệm là \(x = - \frac{9}{2};\,\,x = \frac{{15}}{2}\).
b) Điều kiện xác định \(x \ne - 1,\,\,x \ne 0\).
\(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\)
\(\frac{{\left( {2x + 1} \right)x}}{{x\left( {x + 1} \right)}} + \frac{{2\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{2}{{x\left( {x + 1} \right)}}\)
\(\left( {2x + 1} \right)x + 2\left( {x + 1} \right) = 2\)
\(2{x^2} + x + 2x + 2 = 2\)
\(2{x^2} + 3x = 0\)
\(x\left( {2x + 3} \right) = 0\)
\(x = 0\) hoặc \(2x + 3 = 0\)
\(x = 0\) (không thỏa mãn) hoặc \(x = - \frac{3}{2}\) (thỏa mãn).
Vậy nghiệm của phương trình đã cho là \(x = - \frac{3}{2}.\)Lời giải
a) \[ - 4x + 3 \le 3x - 1\]
\[ - 4x - 3x \le - 1 - 3\]
\[ - 7x \le - 4\]
\[x \ge \frac{4}{7}.\]
Vậy nghiệm của bất phương trình đã cho là \[x \ge \frac{4}{7}.\]
b) \[\frac{{4x + 1}}{3} - \frac{{x - 5}}{4} \ge \frac{1}{2} - \frac{{3 - x}}{5}\]
\[\frac{{20\left( {4x + 1} \right)}}{{60}} - \frac{{15\left( {x - 5} \right)}}{{60}} \ge \frac{{30 \cdot 1}}{{60}} - \frac{{12\left( {3 - x} \right)}}{{60}}\]
\[20\left( {4x + 1} \right) - 15\left( {x - 5} \right) \ge 30 \cdot 1 - 12\left( {3 - x} \right)\]
\[80x + 20 - 15x + 75 \ge 30 - 36 + 12x\]
\[65x + 95 \ge - 6 + 12x\]
\[53x \ge - 101\]
\[x \ge - \frac{{101}}{{53}}\].
Vậy nghiệm của bất phương trình đã cho là \[x \ge - \frac{{101}}{{53}}\].Lời giải
a) Ta viết \(y = mx + n\) về dạng \(mx - y = - n\).
Do đó đồ thị hàm số \(y = mx + n\) biểu diễn tất cả các nghiệm của phương trình bậc nhất một ẩn \(mx - y = - n\).
Nghiệm tổng quát của phương trình đó là \(\left( {x;\,\,mx + n} \right)\) với \(x \in \mathbb{R}\) tùy ý.
b) Để đồ thị hàm số \(y = mx + n\) đi qua điểm \(A\left( {1;3} \right)\) thì tọa độ điểm \(A\) thỏa mãn hàm số đã cho.
Thay \(x = 1,\,\,y = 3\) vào hàm số \(y = mx + n,\) ta được:
\(3 = m \cdot 1 + n\) hay \(m + n = 3\) (1)
Để đồ thị hàm số \(y = mx + n\) đi qua điểm \(B\left( { - 1; - 2} \right)\) thì tọa độ điểm \(B\) thỏa mãn hàm số đã cho.
Thay \(x = - 1,\,\,y = - 2\) vào hàm số \(y = mx + n,\) ta được:
\( - 2 = m \cdot \left( { - 1} \right) + n\) hay \( - m + n = - 2\) (1)
Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}m + n = 3\\ - m + n = - 2\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được:
\(2n = 1\) suy ra \(n = \frac{1}{2}.\)
Thay \(n = \frac{1}{2}\) vào phương trình \(m + n = 3,\) ta được:
\(m + \frac{1}{2} = 3,\) suy ra \(m = \frac{5}{2}.\)
Vậy \(m = \frac{5}{2}\) và \(n = \frac{1}{2}.\)
Lời giải
Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).
Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).
Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:
\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)
Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)
Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:
\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).
Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:
\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).
Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)
Lời giải
a) Với chế độ ăn kiêng và luyện tập hợp lí, chị Hương có thể giảm \(0,5\) kg mỗi tuần thì số kg chị Hương giảm được sau \(x\) tuần là: \(0,5x\) (kg).
Cân nặng của chị Hương sau \(x\) tuần là: \(55 - 0,5x\) (kg).
Theo bài, chị Hương muốn giảm cân sao cho cân nặng của mình không lớn hơn 45 kg nên ta có bất phương trình: \(55 - 0,5x \le 45\).
Vậy từ dữ kiện đề bài, ta viết được bất phương trình: \(55 - 0,5x \le 45\).
b) Giải bất phương trình:
\(55 - 0,5x \le 45\)
\(10 \le 0,5x\)
\(x \ge 20\).
Vậy chị Hương phải thực hiện chế độ ăn kiêng và luyện tập ít nhất 20 tuần để đạt được mục tiêu của mình.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.