Thi Online Bài tập chuyên đề Toán 7 Dạng 6: Đại lượng tỷ lệ nghịch có đáp án
Bài tập chuyên đề Toán 7 Dạng 6: Đại lượng tỷ lệ nghịch có đáp án - Đề 1
-
175 lượt thi
-
31 câu hỏi
-
45 phút
Câu 1:
Các giá trị tương ứng của x và y được cho trong hai bảng:
Bảng I
x
3
-4,5
5
0,75
22,5
-7,5
y
-15
10
-9
-60
-2,5
-8
Bảng II
x
3
-0,5
-6
0,95
0,35

y
15
-2,5
-30
4,75
-7,5
1975
a) Xác định xem hai đại lượng y và x trong bảng nào tỉ lệ thuận? tỉ lệ nghịch? Tìm các hệ số tỉ lệ (biết các giá trị tương ứng còn lại cùng có quan hệ tỉ lệ như các giá trị đã cho trong bảng).
b) Điền tiếp các giá trị vào ô trống.
Các giá trị tương ứng của x và y được cho trong hai bảng:
Bảng I
x |
3 |
-4,5 |
5 |
0,75 |
|
22,5 |
-7,5 |
|
y |
-15 |
10 |
-9 |
-60 |
-2,5 |
|
|
-8 |
Bảng II
x |
3 |
-0,5 |
-6 |
0,95 |
|
0,35 |
|
|
y |
15 |
-2,5 |
-30 |
4,75 |
-7,5 |
|
|
1975 |
a) Xác định xem hai đại lượng y và x trong bảng nào tỉ lệ thuận? tỉ lệ nghịch? Tìm các hệ số tỉ lệ (biết các giá trị tương ứng còn lại cùng có quan hệ tỉ lệ như các giá trị đã cho trong bảng).
b) Điền tiếp các giá trị vào ô trống.
Tại bảng I: Ta có 3.(-15) = -4,5.10 = 5. (-9) = -0,75.60 = -45
Nên y tỉ lệ nghịch với x. Hệ số tỉ lệ -45. Công thức x.y = -45.
Bảng I
x |
3 |
-4,5 |
5 |
0,75 |
18 |
22,5 |
-7,5 |
5,625 |
y |
-15 |
10 |
-9 |
-60 |
-2,5 |
-2 |
6 |
-8 |
Tại bảng II:
Nên y tỉ lệ thuận với x. Hệ số tỉ lệ 5. Công thức y=5x
Bảng II
x |
3 |
-0,5 |
-6 |
0,95 |
-1,5 |
0,35 |
|
395 |
y |
15 |
-2,5 |
-30 |
4,75 |
-7,5 |
1,75 |
-2 |
1975 |
Câu 2:
Cho hai đại lượng tỉ lệ nghịch x và y; x1 và x2 là hai giá trị của x và y1 và y2 là hai giá trị tương ứng của y.
Biết y1 =3,5; y2 =2,5 và 8x2 - 5x1 = 31
Tính x1;x2 và hệ số tỉ lệ a của hai đại lượng tỉ lệ nghịch này.
Cho hai đại lượng tỉ lệ nghịch x và y; x1 và x2 là hai giá trị của x và y1 và y2 là hai giá trị tương ứng của y.
Biết y1 =3,5; y2 =2,5 và 8x2 - 5x1 = 31
Tính x1;x2 và hệ số tỉ lệ a của hai đại lượng tỉ lệ nghịch này.
Theo tính chất của đại lượng tỉ lệ nghịch, và áp dụng tính chất dãy tỉ số bằng nhau ta có:
Do dó x1= y2 : 0,5 = 5
Và x2 = y1 : 0,5 = 7
Hệ số tỉ lệ của hai đại lượng là: a = x1 . y1 = 5.3,5=17,5
Câu 3:
Năm máy cày cùng loại, mỗi máy làm 8 giờ một ngày thì trong 12 ngày cày xong một cánh đồng.
a) Nếu có 10 máy cày cùng loại trên, mỗi máy làm 8 giờ một ngày thì trong mấy ngày cày xong cánh đồng trên.
Năm máy cày cùng loại, mỗi máy làm 8 giờ một ngày thì trong 12 ngày cày xong một cánh đồng.
a) Nếu có 10 máy cày cùng loại trên, mỗi máy làm 8 giờ một ngày thì trong mấy ngày cày xong cánh đồng trên.
Gọi số ngày cần tìm là z ngày ( z > 0 ). Cùng một công việc và số giờ làm việc một ngày của mỗi máy, số máy cày và số ngày là hai đại lượng tỉ lệ nghịch.
Ta có: (ngày).
* Có thể lý luận cách khác :
Một ngày 5 máy cày với tổng số giờ là 5.8 = 40 (giờ)
Một ngày 10 máy cày với tổng số giờ là 10.8 = 80 (giờ)
Cùng một công việc tổng số giờ làm 1 ngày và số ngày hoàn thành công việc là hai đại lượng tỉ lệ nghịch.
Do đó (ngày).
Câu 4:
b) Cần bao nhiêu máy cày, mỗi máy làm 6 giờ mỗi ngày để 5 ngày cày xong cánh đồng ấy ?
b) Cần bao nhiêu máy cày, mỗi máy làm 6 giờ mỗi ngày để 5 ngày cày xong cánh đồng ấy ?
Gọi số máy cày cần tìm là t (cái).
Số giờ năm máy cày xong cánh đồng là 8.12 = 96 (giờ).
Số giờ x máy cày xong cánh đồng là 6.5 = 30 (giờ).
Trên cùng một cánh đồng số máy cày và số giờ làm là hai đại lượng tỉ lệ nghịch. Do đó ta có :
Vậy số máy cày cần tìm là 16 cái.
Câu 5:
Ba cạnh a,b,c của có 4a+6b-5c = 220cm. Ba đường cao tương ứng là ha;hb;hc tỉ lệ thuận với 3;4;5. Tính chu vi của tam giác.
Ba cạnh a,b,c của có 4a+6b-5c = 220cm. Ba đường cao tương ứng là ha;hb;hc tỉ lệ thuận với 3;4;5. Tính chu vi của tam giác.
Gọi diện tích của là S. Ta biết rằng 2S = aha = bhb = chc nên trong một tam giác cạnh và đường cao tương ứng tỉ lệ nghịch với nhau.
Biết ha:hb:hc=3 : 4 :5 nên a:b:c= = 20:15:12
Tức là
Vậy chu vi tam giác là 20.2+15.2+12.2=94(cm).
Các bài thi hot trong chương
Đánh giá trung bình
0%
0%
0%
0%
0%