Đề kiểm tra 1 tiết Toán 7 Chương 3 Hình học có đáp án (Trắc nghiệm 4)

32 người thi tuần này 4.0 12.9 K lượt thi 20 câu hỏi 50 phút

🔥 Đề thi HOT:

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:

Bất đẳng thức nào sau đây đúng trong tam giác.

Lời giải

Chọn A

Câu 2

Cho tam giác ABC cân tại A, BC = 10cm. Độ dài đường trung tuyến AM bằng 12cm. Khi đó độ dài AB là

Lời giải

Do tam giác ABC cân tại A nên AM là đường trung tuyến đồng thời là đường cao. BM=1/2 BC=5cm

Áp dụng định lí Pytago trong tam giác ABM ta có:

AB2 = BC2 + BM2 = 122 + 52 = 169 ⇒ AB = 13cm. Chọn B

Câu 3

Cho tam giác ABC có ba cạnh là AB = 4cm, AC = 5cm, BC = 7cm. Khẳng định nào dưới đây là đúng?

Lời giải

Vì AB < AC < BC ⇒ ∠C < ∠B < ∠A . Chọn A

Câu 4

Trực tâm của tam giác là:

Lời giải

Chọn B

Câu 5

Bộ ba đoạn thẳng nào sau đây tạo thành một tam giác

Lời giải

Ta có 2 + 4 = 6 > 5 thỏa mãn bất đẳng thức tam giác. Chọn A

Câu 6

Cho tam giác ABC cân tại A, đường cao AH. Đường trung trực của cạnh AC cắt AH tại I. Chọn khẳng định đúng trong các khẳng định sau:

Lời giải

Chọn A

Câu 7

Tam giác ABC có A là góc tù. Cạnh lớn nhất của tam giác ABC là

Lời giải

Chọn A

Câu 8

Trong tam giác ABC nếu AB = 6cm, AC = 15cm. Thì độ dài cạnh BC có thể là:

Lời giải

Theo BĐT tam giác có AC - AB < BC < AC + AB ⇒ 9 < BC < 21. Chọn A

Câu 9

Cho tam giác ABC có B > C Gọi AH là đường vuông góc kẻ từ điểm A đến đường thẳng BC. So sánh BH và HC

Lời giải

Chọn C

Câu 10

Một tam giác cân có độ dài hai cạnh là 4cm và 10cm. Tính chu vi của tam giác đó

Lời giải

Cạnh còn lại có thể bẳng 4cm hoặc 10cm, để thỏa mãn bất đẳng thức tam giác thì cạnh đó là 10cm. Chu vi của tam giác là: 4 + 10 + 10=24. Chọn A

Câu 11

Cho tam giác ABC cân tại A, các đường trung tuyến BC và CE cắt nhau tại G. Chọn khẳng định đúng trong các khẳng định sau:

Lời giải

Chọn D

Câu 12

Cho tam giác ABC có hai đường trung tuyến AE và BD cắt nhau tại G. Phát biểu nào sau đây là sai.

Lời giải

Chọn A

Câu 13

Cho tam giác ABC cân tại A. Trên BC lấy điểm H sao cho AH vuông góc với BC. Giữa AH lấy điểm Q. So sánh nào sau đây là sai.

Lời giải

Chọn A

Câu 14

Cho đoạn thẳng AB, tập hợp các điểm C sao cho tam giác ABC cân tại C là:

Lời giải

Chọn B

Câu 15

Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC ở D. So sánh độ dài AD, DC

Lời giải

Chọn B

Câu 16

Cho tam giác ABC vuông tại A. Trực tâm của tam giác ABC là điểm

Lời giải

Chọn D

Câu 17

Trên đường trung trực của đoạn thẳng AB, lấy hai điểm phân biệt M, N. Khi đó khẳng định nào sau đây đúng.

Lời giải

Chọn D

Câu 18

Tam giác ABC có các đường phân giác BD và CE cắt nhau tại I trong đó góc BIC bằng 120o. Số đo góc A là:

Lời giải

Trong tam giác BIC có ∠(BIC) + ∠(IBC) + ∠(ICB) = 180o ⇒ (IBC) + (ICB) = 60o

∠(ABC) + ∠(ACB) = 2∠(IBC) + 2∠(ICB) = 2(∠(IBC) + ∠(ICB) ) = 2.60o = 120o

Có ∠A = 180o - 120o = 60o. Chọn A

Câu 19

Cho tam giác MNP, E là trung điểm của NP, G là trọng tâm tam giác MNP và MG = 20cm. Độ dài đoạn GE là:

Lời giải

Vì G là trọng tâm tam giác MNP nên GE = 1/2 MG = 10cm. Chọn C

Câu 20

Cho tam giác ABC có AB < AC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA, trên tia đối của tia CB lấy điểm E sao cho CE = CA. So sánh độ dài của AD và AE

Lời giải

Chọn A

4.0

2 Đánh giá

50%

0%

50%

0%

0%