Đề kiểm tra 1 tiết Toán 7 Chương 3 Hình học có đáp án (Trắc nghiệm - Tự luận 4)
34 người thi tuần này 4.0 12.9 K lượt thi 11 câu hỏi 50 phút
🔥 Đề thi HOT:
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 1
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 04
15 câu Trắc nghiệm Toán 7 Kết nối tri thức Bài 1: Tập hợp các số hữu tỉ có đáp án
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 2
Bộ 7 đề thi học kì 2 Toán 7 Cánh Diều có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 3
Bộ 7 đề thi học kì 2 Toán lớp 7 Chân trời sáng tạo có đáp án - Đề 01
Đề kiểm tra cuối học kỳ 2 Toán 7 Kết nối tri thức có đáp án - Đề 4
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. Phần trắc nghiệm (3 điểm)
Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:
Khẳng định nào sau đây đúng về giao điểm của ba đường phân giác của tam giác.
Lời giải
Chọn A
Câu 2
Tam giác ABC có hai trung tuyến BM và CN cắt nhau tại trọng tâm G. Phát biểu nào sau đây là đúng
Lời giải
Chọn C
Lời giải
Chọn D
Lời giải
Ta có AC - AB < BC < AC + AB ⇒ 6 < BC < 8 ⇒ BC = 7cm.
Chọn C
Lời giải
Ta có: 2 + 4 = 6 ⇒ không thỏa mãn bất đẳng thức tam giác. Chọn C
Lời giải
Ta có: ∠P = 180o - 110o - 40o = 30o ⇒ P < N < M
⇒ NM < MP < MP
Chọn A
Câu 7
B. Phần tự luận (7 điểm)
Cho tam giác ABC có
a. So sánh ba góc của tam giác ABC. Tam giác ABC là tam giác gì? Vì sao
Lời giải
a. Do BC > AC > AB ⇒ ∠A > ∠B > ∠C
Ta có AB2 + AC2 = 62 + 82 = 100 = 102 = BC2
Vậy tam giác ABC vuông tại A (1 điểm)
Lời giải
b. Do AB < AC ⇒ BH < HC ( Quan hệ giữa hình chiếu và đường xiên) (0.5 điểm)
Có MB và MC là hai đường xiên kẻ từ M
BH và HC lần lượt là hình chiếu của MB và MC
Mà BH < HC ⇒ MB < MC (0.5 điểm)
Câu 9
Cho tam giác ABC (AC > AB), trung tuyến AM. Trên tia đối của tia MA lấy D sao cho MD = MA
a. Chứng minh ΔMAB = ΔMDC rồi suy ra AB = CD
Lời giải
a. Hình vẽ (0.5 điểm)
Xét ΔABM và ΔDCM có:
BM = MC
∠(AMB) = ∠(BMC)
AM = MD
⇒ ΔABM = ΔDCM (c.g.c) (0.5 điểm)
⇒ AB = DC (hai cạnh tương ứng) (0.5 điểm)
Câu 10
Cho tam giác ABC (AC > AB), trung tuyến AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
b. Chứng minh ∠(ADC) > ∠(DAC) . Từ đó suy ra ∠(MAB) > ∠(MAC) .
Lời giải
b. Theo câu a, AB = CD mà AB < AC ⇒ CD < AC (0.5 điểm)
Trong tam giác ADC có CD < AC ⇒ ∠(DAC) < ∠(ADC) (0.5 điểm)
Mà ∠(BAM) = ∠(ADC) ( 2 góc tương ứng vì ΔABM = ΔDCM)
Suy ra (MAB) > (MAC) (0.5 điểm)
Câu 11
Cho tam giác ABC (AC > AB), trung tuyến AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
c. Kẻ đường cao AH. Lấy E là một điểm nằm giữa A và H. So sánh độ dài HC và HB, EB và EC.
Lời giải
c. Vì AB < AC ⇒ HB < HC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)
Vì HB < HC ⇒ BE < EC (quan hệ giữa hình chiếu và đường xiên) (1 điểm)
2 Đánh giá
50%
0%
50%
0%
0%