Trắc nghiệm Tính chất đường trung trực của một đoạn thẳng có đáp án (Vận dụng)

  • 351 lượt thi

  • 6 câu hỏi

  • 10 phút

Câu 1:

Cho tam giác ABC có AC = AB. Đường phân giác AH và đường trung trực của cạnh AB cắt  nhau tại O. Trên cạnh AB, AC lấy lần lượt E và F sao cho AE = CF

1: So sánh OE và OF

Xem đáp án

Đáp án C

Vì O thuộc đường trung trực của cạnh AB nên OA=OB (tính chất đường trung trực của đoạn thẳng)

ΔOAB cân tại O A1^=B1^ (tính chất tam giác cân ) (1)

Vì AH là đường phân giác của ΔABC nên A1^=A2^ (tính chất tia phân giác )      (2)

Từ (1) và (2) suy ra B1^=A2^

Ta có: AC=AF+CF mà AE=CF (gt) nên AC=AF+AE

Mặt khác AB=AC(gt); AB=AE+BE

Do đó AF=BE

Xét ΔBOE và ΔAOF có:

BE=AF(cmt)B1^=A2^(cmt)OB=OA(cmt)ΔBOE=ΔAOF(c.g.c)

Suy ra OE=OF (hai cạnh tương ứng)


Câu 2:

Cho tam giác ABC có AC=AB. Đường phân giác AH và đường trung trực của cạnh AB cắt  nhau tại O. Trên cạnh AB, AC lấy lần lượt E và F sao cho AE=CF

2: Khi E và F di động thỏa mãn AE=CF thì đường trung trực của EF đi qua điểm cố định nào?

Xem đáp án

Đáp án A

Theo câu trước ta có: OE=OF nên nằm trên đường trung trực của đoạn thẳng EF (tính chất đường trung trực của đoạn thẳng)

Do ΔABC cố định nên O cũng cố định

Vậy đường trung trực của đoạn thẳng EF luôn đi qua điểm O cố định


Câu 3:

Cho tam giác ABC trong đó A^=100o. Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự E và F. Tính EAF^

Xem đáp án

Đáp án A

Vì E thuộc đường trung trực của AB nên EA=EB (tính chất đường trung trực của đoạn thẳng)

Khi đó ΔABE cân tại E (dấu hiêu nhận biết tam giác cân) A1^=B^ (tính chất tam giác cân)

Vì F thuộc đường trung trực của AC nên FA=FC tính chất đường trung trực của đoạn thẳng)

Khi đó ΔAFC cân tại F(dấu hiêu nhận biết tam giác cân) A3^=C^ (tính chất tam giác cân)

Do đó A1^+A3^=B^+C^

Xét ΔABC có : BAC^+B^+C^=180o (định lí tổng ba góc của một tam giác)

B^+C^=180oBAC^=180o100o=80o hay A1^+A3^=80o

Lại có :

A1^+A2^+A3^=BAC^A2^=BAC^(A1^+A3^)=100o80o=20o


Câu 4:

Cho tam giác ABC trong đó A^=110o. Các đường trung trực của AB và AC cắt cạnh BC theo thứ tự E và F. Tính EAF^

Xem đáp án

Đáp án C

Vì E thuộc đường trung trực của AB nên EA=EB (tính chất đường trung trực của đoạn thẳng)

Khi đó ΔABE cân tại E (dấu hiêu nhận biết tam giác cân) A1^=B^ (tính chất tam giác cân)

Vì F thuộc đường trung trực của AC nên FA=FC tính chất đường trung trực của đoạn thẳng)

Khi đó ΔAFC cân tại F(dấu hiêu nhận biết tam giác cân) A3^=C^ (tính chất tam giác cân)

Do đó A1^+A3^=B^+C^

Xét ΔABC có : BAC^+B^+C^=180o (định lí tổng ba góc của một tam giác)

B^+C^=180oBAC^=180o110o=70o hay A1^+A3^=70o

Lại có :

A1^+A2^+A3^=BAC^A2^=BAC^(A1^+A3^)=110o70o=40o


Câu 5:

Cho tam giác  ABC vuông tại A, kẻ đường cao AH. Trên cạnh AC lấy điểm K sao cho AK=AH. Kẻ KDAC(DAC). Chọn câu đúng

Xem đáp án

Đáp án D

Xét tam giác vuông AHD và tam giác AKD có:

AH=AK(gt)ADchungΔAHD=ΔAKD(chcgv)

Nên A đúng

Từ đó ta có: HD=DK;HAD^=DAK^ suy ra AD là tia phân giác góc HAK nên C đúng

Ta có: AH=AK(gt) và HA=DK(cmt) suy ra AD là đường trung trực đoạn HK nên B đúng

Vậy cả A,B,C đúng


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Có thể bạn quan tâm

Các bài thi hot trong chương

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận