Câu hỏi:
28/06/2022 216Biết \[\mathop \smallint \limits_0^{\frac{\pi }{2}} \frac{{3\sin x + \cos x}}{{2\sin x + 3\cos x}}dx = - \frac{7}{{13}}\ln 2 + b\ln 3 + c\pi \,\,\left( {b,c \in \mathbb{Q}} \right).\]. Tính \(\frac{b}{c}\).
Quảng cáo
Trả lời:
Ta có\[3\sin x + \cos x = A\left( {2\sin x + 3\cos x} \right) + B\left( {2\cos x - 3\sin x} \right)\]
\[ \Leftrightarrow 3sinx + cosx = (2A - 3B)sinx + (3A + 2B)cosx\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2A - 3B = 3}\\{3A + 2B = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{A = \frac{9}{{13}}}\\{B = - \frac{7}{{13}}}\end{array}} \right.\)
Nên
\[3\sin x + \cos x = \frac{9}{{13}}\left( {2\sin x + 3\cos x} \right) - \frac{7}{{13}}\left( {2\cos x - 3\sin x} \right)\]
Từ đó ta có
\(\int\limits_0^{\frac{\pi }{2}} {\frac{{3sinx + cosx}}{{2sinx + 3cosx}}} dx = \int\limits_0^{\frac{\pi }{2}} {\frac{{\frac{9}{{13}}(2sinx + 3cosx) - \frac{7}{{13}}(2cosx - 3sinx)}}{{2sinx + 3cosx}}dx} \)
\(\begin{array}{l} = \frac{9}{{13}}\int\limits_0^{\frac{\pi }{2}} {dx - \frac{7}{{13}}} \int\limits_0^{\frac{\pi }{2}} {\frac{{2cosx - 3sinx}}{{2sinx + 3cosx}}} dx\\ = \frac{{9\pi }}{{26}} - \frac{7}{{13}}\int\limits_0^{\frac{\pi }{2}} {\frac{1}{{2sinx + 3cosx}}} d(2sinx + 3cosx)\\ = \frac{{9\pi }}{{26}} - \frac{7}{{13}}ln|2sinx + 3cosx|\left| {_0^{\frac{\pi }{2}}} \right.\\ = \frac{{9\pi }}{{26}} - \frac{7}{{13}}ln2 + \frac{7}{{13}}ln3\end{array}\)
Suy ra\[b = \frac{7}{{13}};c = \frac{9}{{26}} \Rightarrow \frac{b}{c} = \frac{{14}}{9}\]
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt
\[\begin{array}{*{20}{l}}{t = \frac{{\sqrt {{x^2} + 1} }}{x} \Leftrightarrow {t^2} = \frac{{{x^2} + 1}}{{{x^2}}} = 1 + \frac{1}{{{x^2}}}}\\{ \Rightarrow 2tdt = - \frac{2}{{{x^3}}}dx \Rightarrow tdt = - \frac{{dx}}{{{x^3}}}}\end{array}\]
Và\[{t^2}{x^2} = {x^2} + 1 \Rightarrow {x^2}\left( {{t^2} - 1} \right) = 1 \Leftrightarrow {x^2} = \frac{1}{{{t^2} - 1}} \Rightarrow \frac{{dx}}{x} = - \frac{t}{{{t^2} - 1}}dt\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow t = \sqrt 2 }\\{x = \sqrt 3 \Rightarrow t = \frac{2}{{\sqrt 3 }}}\end{array}} \right.\)
Khi đó ta có:\[I = - \mathop \smallint \limits_{\sqrt 2 }^{\frac{2}{{\sqrt 3 }}} \frac{{{t^2}}}{{{t^2} - 1}}dt\]
Đáp án cần chọn là: A
Lời giải
Bước 1: Đổi biến
Đặt\[t = {x^2} \Rightarrow dt = 2xdx\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow t = 1}\\{x = 2 \Rightarrow t = 4}\end{array}} \right.\)
Bước 2:
Khi đó ta có \[I = \mathop \smallint \limits_1^2 4xf\left( {{x^2}} \right)dx = \mathop \smallint \limits_1^4 2f\left( t \right)dt = 2\mathop \smallint \limits_1^4 f\left( x \right)dx\]
\[ = 2\left[ {\mathop \smallint \limits_1^3 f\left( x \right)dx + \mathop \smallint \limits_3^4 f\left( x \right)dx} \right] = 2\left( {4 - 1} \right) = 6\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.