Câu hỏi:

28/06/2022 133

Cho hàm số f(x) liên tục trên đoạn \[\left[ {0;1} \right]\;\]và \[\mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)dx = 5\] Tính \[I = \mathop \smallint \limits_0^\pi xf\left( {\sin x} \right)dx\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:\[I = \mathop \smallint \limits_0^\pi xf\left( {\sin x} \right)dx = \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)dx + \mathop \smallint \limits_{\frac{\pi }{2}}^\pi xf\left( {\sin x} \right)dx\]

Xét \[{I_1} = \mathop \smallint \limits_{\frac{\pi }{2}}^\pi xf\left( {\sin x} \right)dx\]đặt\[t = \pi - x \Rightarrow dt = - dx\]

Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} \Rightarrow t = \frac{\pi }{2}}\\{x = \pi \Rightarrow t = 0}\end{array}} \right.\)

Khi đó ta có:

\[\begin{array}{*{20}{l}}{{I_1} = - \mathop \smallint \limits_{\frac{\pi }{2}}^0 \left( {\pi - t} \right)f\left( {\sin \left( {\pi - t} \right)} \right)\,dt}\\{\,\,\,\,\,\, = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\pi - t} \right)f\left( {\sin t} \right)\,dt}\\{\,\,\,\,\,\, = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\pi - x} \right)f\left( {\sin x} \right)\,dx}\\{\,\,\,\,\,\, = \pi \mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)\,dx - \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)\,dx}\end{array}\]

\[\begin{array}{*{20}{l}}{ \Rightarrow I = \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)dx + \pi \mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)\,dx - \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)\,dx}\\{ \Rightarrow I = \pi \mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)\,dx = 5\pi .}\end{array}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đồ thị như hình vẽ. Biết các miền A và B có diện tích lần lượt là 4 và 1. Tính \[I = \mathop \smallint \limits_1^2 4xf\left( {{x^2}} \right)dx\]

Cho hàm số y=f(x) có đồ thị như hình vẽ. Biết các miền A và B có diện tích lần lượt là 4 và 1. Tính  (ảnh 1)

Xem đáp án » 28/06/2022 610

Câu 2:

Cho \[2\sqrt 3 m - \mathop \smallint \limits_0^1 \frac{{4{x^3}}}{{{{\left( {{x^4} + 2} \right)}^2}}}dx = 0\]. Khi đó \[144{m^2} - 1\;\]bằng:

Xem đáp án » 28/06/2022 398

Câu 3:

Tính tích phân \[I = \mathop \smallint \limits_0^\pi {\cos ^3}x\sin xdx\]

Đặt \[\cos x = t \Rightarrow - \sin xdx = dt \Rightarrow \sin xdx = - dt\]

Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 1}\\{x = \pi \Rightarrow t = - 1}\end{array}} \right.\)

\( \Rightarrow I = - \int\limits_1^{ - 1} {{t^3}dt = } \int\limits_{ - 1}^1 {{t^3}dt = \frac{{{t^4}}}{4}} \left| {_{ - 1}^1} \right. = \frac{1}{4} - \frac{1}{4} = 0\)

Xem đáp án » 28/06/2022 368

Câu 4:

Cho tích phân \[I = \mathop \smallint \limits_1^{\sqrt 3 } \frac{{\sqrt {1 + {x^2}} }}{{{x^2}}}dx\]. Nếu đổi biến số \[t = \frac{{\sqrt {{x^2} + 1} }}{x}\;\] thì:

Xem đáp án » 28/06/2022 327

Câu 5:

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin x\sqrt {8 + \cos x} dx\] Đặt \[u = 8 + cosx\] thì kết quả nào sau đây là đúng?

Xem đáp án » 28/06/2022 323

Câu 6:

Cho \[I = \mathop \smallint \limits_1^e \frac{{\sqrt {1 + 3\ln x} }}{x}dx\] và \[t = \sqrt {1 + 3lnx} \;\]. Chọn khẳng định sai trong các khẳng định sau:

Xem đáp án » 28/06/2022 310

Câu 7:

Cho y=f(x) là hàm số lẻ và liên tục trên \[\left[ { - a;a} \right].\]Chọn kết luận đúng:

Xem đáp án » 28/06/2022 290

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn