Câu hỏi:
28/06/2022 187Cho hàm số f(x) liên tục trên đoạn \[\left[ {0;1} \right]\;\]và \[\mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)dx = 5\] Tính \[I = \mathop \smallint \limits_0^\pi xf\left( {\sin x} \right)dx\]
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Ta có:\[I = \mathop \smallint \limits_0^\pi xf\left( {\sin x} \right)dx = \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)dx + \mathop \smallint \limits_{\frac{\pi }{2}}^\pi xf\left( {\sin x} \right)dx\]
Xét \[{I_1} = \mathop \smallint \limits_{\frac{\pi }{2}}^\pi xf\left( {\sin x} \right)dx\]đặt\[t = \pi - x \Rightarrow dt = - dx\]
Đổi cận: \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} \Rightarrow t = \frac{\pi }{2}}\\{x = \pi \Rightarrow t = 0}\end{array}} \right.\)
Khi đó ta có:
\[\begin{array}{*{20}{l}}{{I_1} = - \mathop \smallint \limits_{\frac{\pi }{2}}^0 \left( {\pi - t} \right)f\left( {\sin \left( {\pi - t} \right)} \right)\,dt}\\{\,\,\,\,\,\, = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\pi - t} \right)f\left( {\sin t} \right)\,dt}\\{\,\,\,\,\,\, = \mathop \smallint \limits_0^{\frac{\pi }{2}} \left( {\pi - x} \right)f\left( {\sin x} \right)\,dx}\\{\,\,\,\,\,\, = \pi \mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)\,dx - \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)\,dx}\end{array}\]
\[\begin{array}{*{20}{l}}{ \Rightarrow I = \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)dx + \pi \mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)\,dx - \mathop \smallint \limits_0^{\frac{\pi }{2}} xf\left( {\sin x} \right)\,dx}\\{ \Rightarrow I = \pi \mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)\,dx = 5\pi .}\end{array}\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tích phân \[I = \mathop \smallint \limits_1^{\sqrt 3 } \frac{{\sqrt {1 + {x^2}} }}{{{x^2}}}dx\]. Nếu đổi biến số \[t = \frac{{\sqrt {{x^2} + 1} }}{x}\;\] thì:
Câu 2:
Cho hàm số y=f(x) có đồ thị như hình vẽ. Biết các miền A và B có diện tích lần lượt là 4 và 1. Tính \[I = \mathop \smallint \limits_1^2 4xf\left( {{x^2}} \right)dx\]
Câu 3:
Cho \[2\sqrt 3 m - \mathop \smallint \limits_0^1 \frac{{4{x^3}}}{{{{\left( {{x^4} + 2} \right)}^2}}}dx = 0\]. Khi đó \[144{m^2} - 1\;\]bằng:
Câu 4:
Tính tích phân \[I = \mathop \smallint \limits_0^\pi {\cos ^3}x\sin xdx\]
Đặt \[\cos x = t \Rightarrow - \sin xdx = dt \Rightarrow \sin xdx = - dt\]
Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 1}\\{x = \pi \Rightarrow t = - 1}\end{array}} \right.\)
\( \Rightarrow I = - \int\limits_1^{ - 1} {{t^3}dt = } \int\limits_{ - 1}^1 {{t^3}dt = \frac{{{t^4}}}{4}} \left| {_{ - 1}^1} \right. = \frac{1}{4} - \frac{1}{4} = 0\)
Câu 5:
Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin x\sqrt {8 + \cos x} dx\] Đặt \[u = 8 + cosx\] thì kết quả nào sau đây là đúng?
Câu 6:
Cho \[I = \mathop \smallint \limits_1^e \frac{{\sqrt {1 + 3\ln x} }}{x}dx\] và \[t = \sqrt {1 + 3lnx} \;\]. Chọn khẳng định sai trong các khẳng định sau:
Câu 7:
Biết rằng \[I = \mathop \smallint \limits_0^1 \frac{x}{{{x^2} + 1}}dx = \ln a\] với \[a \in R\]. Khi đó giá trị của a bằng:
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận