Câu hỏi:

29/06/2022 455

Từ một tấm tôn hình chữ nhật kích thước 50cm×240cm, người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50cm, theo hai cách sau (xem hình minh họa dưới đây):

- Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

- Cách 2: Cắt tấm tôn ban đầu thành hai tấm bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

Kí hiệu V1 là thể tích của thùng gò được theo cách 1 và V2 là tổng thể tích của hai thùng gò được theo cách 2. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\)

Từ một tấm tôn hình chữ nhật kích thước 50cm×240cm, người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50cm, theo hai cách sau (xem hình minh họa dưới đây): (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cách 1: Chu vi đáy là\[240cm \Rightarrow 2\pi {R_1} = 240 \Leftrightarrow {R_1} = \frac{{120}}{\pi }\]

\[ \Rightarrow {V_1} = \pi R_1^2h = \pi {\left( {\frac{{120}}{\pi }} \right)^2}h = \frac{{{{120}^2}.50}}{\pi }\]

Cách 2: Chu vi đáy mỗi hình trụ nhỏ là:

\[240:2 = 120cm \Rightarrow 2\pi R = 120 \Rightarrow R = \frac{{60}}{\pi }\]

\[ \Rightarrow V = \pi {R^2}h = \pi {\left( {\frac{{60}}{\pi }} \right)^2}.50 = \frac{{{{60}^2}.50}}{\pi } \Rightarrow {V_2} = 2V = \frac{{{{2.60}^2}.50}}{\pi }\]

Vậy \[\frac{{{V_1}}}{{{V_2}}} = \frac{{{{120}^2}.50}}{\pi }:\frac{{{{2.60}^2}.50}}{\pi } = 2\]

Một đường tròn có bán kính rr thì có chu vi và diện tích lần lượt là

\[C = 2\pi r;S = \pi {r^2} \Rightarrow S = \frac{{{C^2}}}{{4\pi }}\]

Gọi chiều dài tấm tôn là a thì tổng diện tích đáy của thùng theo 2 cách lần lượt là

\[{S_1} = \frac{{{a^2}}}{{4\pi }};{S_2} = 2.\frac{{{{\left( {\frac{a}{2}} \right)}^2}}}{{4\pi }} = \frac{{{a^2}}}{{8\pi }} \Rightarrow \frac{{{S_1}}}{{{S_2}}} = 2 \Rightarrow \frac{{{V_1}}}{{{V_2}}} = 2\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nếu cắt mặt trụ tròn xoay bởi một mặt phẳng tạo với trục một góc \[\alpha ({0^0} < \alpha < {90^0})\;\] thì ta được:

Xem đáp án » 29/06/2022 911

Câu 2:

Cho hình chữ nhật ABCD, khi quay hình chữ nhật quanh cạnh AD thì CD được gọi là:

Xem đáp án » 29/06/2022 859

Câu 3:

Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng \(\frac{a}{2}\) ta được thiết diện là một hình vuông. Tính thể tích khối trụ.

Xem đáp án » 29/06/2022 786

Câu 4:

Người ta xếp hai quả cầu có cùng bán kính r vào một chiếc hộp hình trụ sao cho các quả cầu đều tiếp xúc với hai đáy, đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả cầu đều tiếp xúc với đường sinh của hình trụ (tham khảo hình vẽ). Biết thể tích khối trụ là 120cm3, thể tích của mỗi khối cầu bằng

Xem đáp án » 29/06/2022 783

Câu 5:

Hình trụ có bán kính đáy r = 2cm và chiều cao h = 5cm có diện tích xung quanh:

Xem đáp án » 29/06/2022 697

Câu 6:

Một hình trụ có chiều cao bằng 3, chu vi đáy bằng \[4\pi \]. Thể tích của khối trụ là:

Xem đáp án » 29/06/2022 678

Câu 7:

Cho hình chữ nhật ABCD có AB = 3, BC = 4. Gọi V1,V2 lần lượt là thể tích của các khối trụ sinh ra khi quay hình chữ nhật quanh trục AB và BC. Khi đó tỉ số\(\frac{{{V_2}}}{{{V_2}}}\) bằng:

Xem đáp án » 29/06/2022 622

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store