Cho hình trụ bán kính đường tròn đáy bằng 1. Hai điểm A và B lần lượt thuộc hai đường tròn đáy sao cho \[AB = \sqrt 6 \], khoảng cách giữa hai đường thẳng AB và trục của hình trụ bằng 12. Thể tích khối trụ được giới hạn bởi hình trụ đó bằng:
Quảng cáo
Trả lời:
Gọi O,O′ lần lượt là tâm đường tròn đáy chứa A,B.
Gọi A′ là hình chiếu của A lên đường tròn đáy chứa điểm B.
Ta có\[AA'\parallel OO' \Rightarrow OO'\parallel \left( {AA'B} \right) \supset AB\]
\[ \Rightarrow d\left( {OO';AB} \right) = d\left( {OO';\left( {AA'B} \right)} \right) = d\left( {O';\left( {AA'B} \right)} \right)\]
Gọi H là trung điểm của A′B, ta có \[O'H \bot A'B\] (quan hệ vuông góc giữa đường kính và dây cung).
Khi đó ta có:\(\left\{ {\begin{array}{*{20}{c}}{O\prime H \bot A\prime B}\\{O\prime H \bot AA\prime }\end{array}} \right. \Rightarrow O\prime H \bot (AA\prime B) \Rightarrow d\left( {OO';AB} \right) = OH = \frac{1}{2}\)
Áp dụng định lí Pytago trong tam giác vuông O′HB có
\[HB = \sqrt {O'{B^2} - O'{H^2}} = \sqrt {{1^2} - {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 3 }}{2}\]
\[ \Rightarrow A'B = 2HB = \sqrt 3 \]
Áp dụng định lí Pytago trong tam giác vuông có:
\[AA' = \sqrt {A{B^2} - A'{B^2}} = \sqrt {6 - 3} = \sqrt 3 \]
Vậy thể tích khối trụ là \[V = \pi {r^2}h = \pi {.1^2}.\sqrt 3 = \pi \sqrt 3 \]Đáp án cần chọn là: C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thể tích gáo \[{V_1} = \pi {R^2}.h = \pi .0,{04^2}.0,05 = 8\pi {.10^{ - 5}}({m^3})\]
Số nước múc ra trong một ngày \[{V_2} = 170{V_1} = 170.8.\pi {.10^{ - 5}} = 0,0136\pi \left( {{m^3}} \right)\]
Số ngày dùng hết nước là \[\frac{{2.3.2}}{{{V_2}}} = \frac{{12}}{{0,0136\pi }} \approx 281\] (ngày)
Đáp án cần chọn là: B
Lời giải
Quay hình chữ nhật ABCD quanh cạnh AD thì được hình trụ có chiều cao AD, đường sinh BC và bán kính đáy AB,CD.
Do đó CD được gọi là bán kính đáy.
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.