Câu hỏi:
29/06/2022 459Cho khối trụ có hai đáy là (O) và (O′). AB,CD lần lượt là hai đường kính của (O) và (O′), góc giữa AB và CD bằng 300, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi A′,B′ lần lượt là hình chiếu của A,B lên đường tròn (O).
C′,D′ lần lượt là hình chiếu của C,D lên đường tròn (O′).
=>AC′BD′ là hình bình hành, lại có AB = CD = C′D′ nên AC′BD′ là hình chữ nhật.
Khi đó AC′BD′.A′CB′D là hình hộp chữ nhật.
Ta có:\[{V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + {V_{A.A'CD}} + {V_{B.B'CD}} + {V_{C.C'AB}} + {V_{D.D'AB}}\]
Ta có:\[{V_{A.A'CD}} = \frac{1}{3}AA'.{S_{A'CD}} = \frac{1}{3}AA'.\frac{1}{2}{S_{A'CB'D}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\]
CMTT ta có: \[{V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\]
\[\begin{array}{*{20}{l}}{ \Rightarrow {V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + 4.\frac{1}{6}{V_{AC'BD'.A'CB'D}}}\\{ \Rightarrow {V_{ABCD}} = \frac{1}{3}{V_{AC'BD'.A'CB'D}} = 30}\\{ \Rightarrow {V_{AC'BD'.A'CB'D}} = 90}\end{array}\]
Theo bài ra ta có: \[\angle \left( {AB;CD} \right) = {30^0} \Rightarrow \angle \left( {AB;C'D'} \right) = {30^0}\]giả sử\[\angle \left( {AB;C'D'} \right) = \angle \[ \Rightarrow {S_{AC'BD'}} = 4{S_{OAC'}} = 9\]Lại có \[OA = OC' = \frac{1}{2}AB = 3\]
\[ \Rightarrow {S_{OAC'}} = \frac{1}{2}OA.OC'.\sin \angle AOC' = \frac{1}{2}.3.3.\sin {30^0} = \frac{9}{4}\]
Ta có: \[{V_{AC'BD'.A'CB'D}} = AA'.{S_{AC'BD'}} \Rightarrow 90 = AA'.9 \Leftrightarrow AA' = 10\]
Vậy thể tích khối trụ là \[V = \pi {r^2}h = \pi .O{A^2}.AA' = \pi {.3^2}.10 = 90\pi \]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nếu cắt mặt trụ tròn xoay bởi một mặt phẳng tạo với trục một góc \[\alpha ({0^0} < \alpha < {90^0})\;\] thì ta được:
Câu 2:
Cho hình chữ nhật ABCD, khi quay hình chữ nhật quanh cạnh AD thì CD được gọi là:
Câu 3:
Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng \(\frac{a}{2}\) ta được thiết diện là một hình vuông. Tính thể tích khối trụ.
Câu 4:
Người ta xếp hai quả cầu có cùng bán kính r vào một chiếc hộp hình trụ sao cho các quả cầu đều tiếp xúc với hai đáy, đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả cầu đều tiếp xúc với đường sinh của hình trụ (tham khảo hình vẽ). Biết thể tích khối trụ là 120cm3, thể tích của mỗi khối cầu bằng
Câu 5:
Hình trụ có bán kính đáy r = 2cm và chiều cao h = 5cm có diện tích xung quanh:
Câu 6:
Một hình trụ có chiều cao bằng 3, chu vi đáy bằng \[4\pi \]. Thể tích của khối trụ là:
Câu 7:
Cho hình chữ nhật ABCD có AB = 3, BC = 4. Gọi V1,V2 lần lượt là thể tích của các khối trụ sinh ra khi quay hình chữ nhật quanh trục AB và BC. Khi đó tỉ số\(\frac{{{V_2}}}{{{V_2}}}\) bằng:
về câu hỏi!