Câu hỏi:
30/06/2022 420Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[(S):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]có tâm I(1;−2;1) và bán kính R=3.
Do (P) đi qua A,B và cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất nên (P) đi qua tâm I của (S)
Ta có:\[\overrightarrow {IA} = \left( { - 1;1; - 1} \right),\overrightarrow {IB} = \left( {0;3; - 2} \right);\overrightarrow {{n_{(P)}}} = \left[ {\overrightarrow {IA} ,\overrightarrow {IB} } \right] = \left( {1; - 2; - 3} \right)\]
Phương trình mặt phẳng\[(P):1(x--0)--2(y + 1)--3(z--0) = 0\]hay\[x--2y--3z--2 = 0\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Viết phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0
Câu 2:
Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].
Câu 3:
Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
Câu 5:
Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α) có phương trình 2x−2y−z+3=0. Bán kính của (S) là:
về câu hỏi!