5 câu Trắc nghiệm Toán 10 Cánh diều Biểu thức tọa độ của các phép toán vectơ (Phần 2) có đáp án (Vận dụng)
22 người thi tuần này 4.6 1.4 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có M là trung điểm của cạnh BC.
Suy ra \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_B} + {x_C}}}{2}\\{y_M} = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)
Do đó \(\left\{ \begin{array}{l}1 = \frac{{{x_B} + {x_C}}}{2}\\ - 1 = \frac{{{y_B} + {y_C}}}{2}\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}2 = {x_B} + {x_C}\\ - 2 = {y_B} + {y_C}\end{array} \right.\)
Ta có G là trọng tâm của tam giác ABC.
Suy ra \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)
Do đó \(\left\{ \begin{array}{l}\frac{2}{3} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\0 = \frac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}2 = {x_A} + {x_B} + {x_C}\\0 = {y_A} + {y_B} + {y_C}\end{array} \right.\)
Thế xB + xC = 2 vào xA + xB + xC = 2, ta được: xA + 2 = 2.
Suy ra xA = 0.
Thế yB + yC = –2 vào yA + yB + yC = 0, ta được: yA – 2 = 0.
Suy ra yA = 2.
Do đó tọa độ A(0; 2).
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có I là trung điểm của AB.
Suy ra \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{3 - 1}}{2} = 1\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{3 - 9}}{2} = - 3\end{array} \right.\)
Do đó tọa độ I(1; –3).
Vì vậy \(\overrightarrow {CI} = \left( { - 4; - 2} \right)\).
Suy ra \( - \frac{1}{2}\overrightarrow {CI} = \left( { - \frac{1}{2}.\left( { - 4} \right); - \frac{1}{2}.\left( { - 2} \right)} \right) = \left( {2;1} \right)\).
Gọi M(xM; yM). Suy ra \(\overrightarrow {AM} = \left( {{x_M} - 3;{y_M} - 3} \right)\).
Ta có \(\overrightarrow {AM} = - \frac{1}{2}\overrightarrow {CI} \).
Suy ra \(\left\{ \begin{array}{l}{x_M} - 3 = 2\\{y_M} - 3 = 1\end{array} \right.\)
Do đó \(\left\{ \begin{array}{l}{x_M} = 5\\{y_M} = 4\end{array} \right.\)
Vì vậy M(5; 4).
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Kẻ AH ⊥ BC tại H.
Ta có:
⦁ \(\overrightarrow {BC} = \left( { - 3; - 3} \right)\). Suy ra \(\frac{1}{4}\overrightarrow {BC} = \left( {\frac{1}{4}.\left( { - 3} \right);\frac{1}{4}.\left( { - 3} \right)} \right) = \left( {\frac{{ - 3}}{4};\frac{{ - 3}}{4}} \right)\);
⦁ \(\overrightarrow {BM} = \left( {x - 2;y - 1} \right)\).
Ta có SABC = 4SABM
Suy ra \(\frac{1}{2}AH.BC = 4.\frac{1}{2}AH.BM\)
Do đó BC = 4BM
Vì vậy \(BM = \frac{1}{4}BC\)
Suy ra \(\overrightarrow {BM} = \frac{1}{4}\overrightarrow {BC} \)
Do đó \(\left\{ \begin{array}{l}x - 2 = - \frac{3}{4}\\y - 1 = - \frac{3}{4}\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}x = \frac{5}{4}\\y = \frac{1}{4}\end{array} \right.\)
Suy ra \({x^2} - {y^2} = {\left( {\frac{5}{4}} \right)^2} + {\left( {\frac{1}{4}} \right)^2} = \frac{{13}}{8}\).
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có \(\overrightarrow {AB} = \left( {4;4} \right),\,\,\overrightarrow {AE} = \left( {a + 1;b + 2} \right)\).
Vì E di động trên đường thẳng AB nên ba điểm A, E, B thẳng hàng.
Tức là, \(\overrightarrow {AE} = k\overrightarrow {AB} \)
Suy ra \(\left\{ \begin{array}{l}a + 1 = 4k\\b + 2 = 4k\end{array} \right.\)
Do đó a + 1 = b + 2
Vì vậy a = b + 1.
Khi đó tọa độ E(b + 1; b).
Ta có:
⦁ \(\overrightarrow {EA} = \left( { - 2 - b; - 2 - b} \right)\).
Suy ra \(2\overrightarrow {EA} = \left( {2\left( { - 2 - b} \right);2\left( { - 2 - b} \right)} \right) = \left( { - 4 - 2b; - 4 - 2b} \right)\);
⦁ \(\overrightarrow {EB} = \left( {2 - b;2 - b} \right)\).
Suy ra \(3\overrightarrow {EB} = \left( {3\left( {2 - b} \right);3\left( {2 - b} \right)} \right) = \left( {6 - 3b;6 - 3b} \right)\);
⦁ \(\overrightarrow {EC} = \left( {3 - b; - 1 - b} \right)\).
Suy ra,
\(2\overrightarrow {EA} + 3\overrightarrow {EB} - \overrightarrow {EC} = \left( { - 4 - 2b + 6 - 3b - 3 + b; - 4 - 2b + 6 - 3b + 1 + b} \right) = \left( { - 4b - 1; - 4b + 3} \right)\).
Khi đó \(\left| {2\overrightarrow {EA} + 3\overrightarrow {EB} - \overrightarrow {EC} } \right| = \sqrt {{{\left( { - 4b - 1} \right)}^2} + {{\left( { - 4b + 3} \right)}^2}} \)
\( = \sqrt {16{b^2} + 8b + 1 + 16{b^2} - 24b + 9} = \sqrt {2\left( {16{b^2} - 8b + 1} \right) + 8} \)
\( = \sqrt {2{{\left( {4b - 1} \right)}^2} + 8} \).
Ta có (4b – 1)2 ≥ 0, ∀b ∈ ℝ.
Suy ra 2(4b – 1)2 ≥ 0, ∀b ∈ ℝ.
Khi đó 2(4b – 1)2 + 8 ≥ 8, ∀b ∈ ℝ.
Vì vậy \(\sqrt {2{{\left( {4b - 1} \right)}^2} + 8} \ge \sqrt 8 = 2\sqrt 2 ,\,\,\forall b \in \mathbb{R}\).
Dấu “=” xảy ra khi và chỉ khi \(4b - 1 = 0 \Leftrightarrow b = \frac{1}{4}\).
Vậy \(\left| {2\overrightarrow {EA} + 3\overrightarrow {EB} - \overrightarrow {EC} } \right|\) đạt giá trị nhỏ nhất khi và chỉ khi \(b = \frac{1}{4}\).
Với \(b = \frac{1}{4}\), ta có \(a = b + 1 = \frac{1}{4} + 1 = \frac{5}{4}\).
Vậy \(ab = \frac{5}{4}.\frac{1}{4} = \frac{5}{{16}}\).
Do đó ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Gọi là lực tổng hợp của \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \).
Chọn hệ tọa độ Oxy như hình vẽ, với x và y được tính bằng đơn vị Newton.
Ta có:
⦁ \(\overrightarrow {{F_1}} = \left( {100;0} \right)\).
⦁ \(\left( {\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} } \right) = 120^\circ \). Suy ra tọa độ \(\overrightarrow {{F_2}} = \left( {100.\cos 60^\circ ;100.\sin 60^\circ } \right) = \left( {50;50\sqrt 3 } \right)\).
Do đó, lực tổng hợp \(\overrightarrow F \) của \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) có tọa độ là:
\(\overrightarrow F = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \left( {100 + 50;0 + 50\sqrt 3 } \right) = \left( {150;50\sqrt 3 } \right)\).
Vì vậy cường độ của lực tổng hợp của \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) là: \(\left| {\overrightarrow F } \right| = \sqrt {{{150}^2} + {{\left( {50\sqrt 3 } \right)}^2}} = 100\sqrt 3 \,\,\,\left( N \right)\).
Vậy ta chọn phương án D.
275 Đánh giá
50%
40%
0%
0%
0%