Giải SGK Toán 9 CD Bài 3. Ứng dụng của tỉ số lượng giác của góc nhọn có đáp án
41 người thi tuần này 4.6 494 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Ta có thể tính khoảng cách AB dựa vào độ cao BC và góc tạo bởi đường bay với phương nằm ngang.
Xét ∆ABC vuông tại C, ta có BC = AB.sinA, suy ra
Lời giải
⦁ Bài toán ở phần mở đầu:
Xét ∆ABC vuông tại C, ta có:
BC = AB.sinA, suy ra
⦁ Hình 29b:
Xét ∆ABC vuông tại C, ta có:
AC = AB.cosA, suy ra
Lời giải

Kẻ AH ⊥ BC.
Vì ∆ABC cân tại A nên đường cao AH đồng thời là đường trung tuyến, do đó H là trung điểm của BC, nên BC = 2BH.
Xét ∆ABH vuông tại H, ta có: BH = AB.cosB = 4.cos23° ≈ 3,7 (m).
Do đó BC = 2BH ≈ 2.3,7 = 7,4 (m).
Vậy BC ≈ 7,4 m.
Lời giải
Xét ∆ACD vuông tại D, ta có:
Ta có AG = AD + DH ≈ 4,69 + 1,64 = 6,33 (m).
Vậy chiều cao AH của cây khoảng 6,33 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
99 Đánh giá
50%
40%
0%
0%
0%