Câu hỏi:

21/05/2022 966

Biết đồ thị hàm số (P):\[y = {x^2} - ({m^2} + 1)x - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ  x1,x2. Tìm giá trị của tham số mm  để biểu thức \[T = {x_1} + {x_2}\;\] đạt giá trị nhỏ nhất.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dễ thấy rằng phương trình hoành độ giao điểm có hai nghiệm phân biệt vì a.c= 1.(−1) < 0 và hai giao điểm có cùng tung độ và có hoành độ đối xứng với nhau qua trục đối xứng \[x = \frac{{{m^2} + 1}}{2}\]

Từ đây suy ra \[T = {x_1} + {x_2} = {m^2} + 1 \ge 1\,\,\forall m\]

Suy ra \[{T_{\min }} = {\left( {{x_1} + {x_2}} \right)_{\min }} = 1\] và đạt được khi m = 0 .

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một cái cổng hình parabol có dạng \[y = - \frac{1}{2}{x^2}\;\] có chiều rộng d = 4m.

Tính chiều cao h của cổng (xem hình minh họa)

 Một cái cổng hình parabol có dạng  có chiều rộng d = 4m.Tính chiều cao h của cổng (xem hình minh họa) (ảnh 1)

Xem đáp án » 13/07/2024 2,770

Câu 2:

Tìm giá trị của m để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương.

Xem đáp án » 21/05/2022 1,777

Câu 3:

Xác định Parabol (P):\[y = a{x^2} + bx - 5\] biết rằng Parabol đi qua điểm A(3;−4) và có trục đối xứng x = −\(\frac{3}{2}\).

Xem đáp án » 21/05/2022 1,490

Câu 4:

Xác định Parabol (P):\[y = a{x^2} + bx + 2\;\] biết rằng Parabol đi qua hai điểm M(1;5) và N(2;−2).

Xem đáp án » 21/05/2022 948

Câu 5:

Xác định Parabol (P):\[y = a{x^2} + bx + 3\;\] biết rằng Parabol có đỉnh I(3;−2).

Xem đáp án » 21/05/2022 816

Câu 6:

Tìm các giá trị của tham số m để phương trình \[\frac{1}{2}{x^2} - 4\left| x \right| + 3 = {m^2}\] có 3 nghiệm thực phân biệt.

Xem đáp án » 21/05/2022 793

Bình luận


Bình luận