Câu hỏi:
17/05/2022 23,420Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.
Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm2.
Câu hỏi trong đề: ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bất phương trình !!
Quảng cáo
Trả lời:
Ta có:\[\angle CAB + \angle BAD + \angle DAE = {180^o}\]
\[ \Rightarrow \angle CAB + \angle EAD = {90^o}\]
Mà \[\angle CAB + \angle CBA = {90^o}\] (\[\Delta CAB\]vuông tại C)
\[ \Rightarrow \angle CBA = \angle EAD\] kết hợp\[AB = AD\,\,\,\left( {gt} \right)\]
\[\begin{array}{*{20}{l}}{ \Rightarrow {\rm{\Delta }}CAB = {\rm{\Delta }}EDA\,\,\,\left( {ch - gn} \right)}\\{ \Rightarrow CB = EA = x \Rightarrow CA = CE - EA = 20 - x\,\,\,\,\left( {cm} \right)}\end{array}\]
Diện tích viên gạch là\[S = A{B^2} = C{B^2} + C{A^2} = {x^2} + {\left( {20 - x} \right)^2}\]
Vì \[S \le 208 \Leftrightarrow {x^2} + {\left( {20 - x} \right)^2} \le 208 \Leftrightarrow 2{x^2} - 40x + 192 \le 0 \Leftrightarrow 8 \le x \le 12\]
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện\[x \ge - 7\]
Đặt \[t = \sqrt {x + 7} \] điều kiện \[t \ge 0\]
Ta có\[\sqrt {{t^2} + 1 - 2t} = 2 - \sqrt {{t^2} - 6 - t} \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \]
Nếu \[t \ge 1\] thì ta có\[3 - t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 9 - 6t + {t^2}}\\{t \le 3}\end{array}} \right. \Leftrightarrow t = 3 \Leftrightarrow \sqrt {x + 7} = 3 \Leftrightarrow x = 2\]
Nếu t < 1 thì ta có \[1 + t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 1 + 2t + {t^2}}\\{t \ge - 1}\end{array}} \right. \Leftrightarrow t = - \frac{7}{3}\;\;\left( l \right)\]
Đáp án cần chọn là: B
</>
Lời giải
Gọi số nguyên lớn nhất bạn An có thể chọn là \[x\left( {x \in \mathbb{Z}} \right)\]
Theo bài ra ta có \[2\left( {4x - 30} \right) - 10\] là số có 2 chữ số.
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{10 \le 2(4x - 30) - 10 \le 99}\\{ - 99 \le 2(4x - 30) - 10 \le - 10}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{20 \le 2(4x - 30) \le 109}\\{ - 89 \le 2(4x - 30) \le 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{10 \le 4x - 30 \le \frac{{109}}{2}}\\{ - \frac{{89}}{2} \le 4x - 30 \le 0}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{40 \le 4x \le \frac{{169}}{2}}\\{ - \frac{{29}}{2} \le 4x \le 30}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{10 \le x \le \frac{{169}}{8}}\\{ - \frac{{29}}{8} \le x \le \frac{{30}}{4}}\end{array}} \right.\)
Vì \[x \in \mathbb{Z}\] và x là số lớn nhất nên x=21.
Vậy số lớn nhất An có thể chọn có hàng đơn vị bằng 1.
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 - Đinh Ngọc Hậu lớp 8.4 -
tại sao lại ra 192 ngay 920-x)^2