Câu hỏi:

17/05/2022 23,420

Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.

 Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.Tìm tập hợp các giá trị của x để diện tích v (ảnh 1)

Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm2.

 Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.Tìm tập hợp các giá trị của x để diện tích v (ảnh 2)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:\[\angle CAB + \angle BAD + \angle DAE = {180^o}\]

\[ \Rightarrow \angle CAB + \angle EAD = {90^o}\]

Mà \[\angle CAB + \angle CBA = {90^o}\] (\[\Delta CAB\]vuông tại C)

\[ \Rightarrow \angle CBA = \angle EAD\] kết hợp\[AB = AD\,\,\,\left( {gt} \right)\]

\[\begin{array}{*{20}{l}}{ \Rightarrow {\rm{\Delta }}CAB = {\rm{\Delta }}EDA\,\,\,\left( {ch - gn} \right)}\\{ \Rightarrow CB = EA = x \Rightarrow CA = CE - EA = 20 - x\,\,\,\,\left( {cm} \right)}\end{array}\]

Diện tích viên gạch là\[S = A{B^2} = C{B^2} + C{A^2} = {x^2} + {\left( {20 - x} \right)^2}\]

Vì \[S \le 208 \Leftrightarrow {x^2} + {\left( {20 - x} \right)^2} \le 208 \Leftrightarrow 2{x^2} - 40x + 192 \le 0 \Leftrightarrow 8 \le x \le 12\]

Đáp án cần chọn là: A

1

10 - Đinh Ngọc Hậu lớp 8.4 -

tại sao lại ra 192 ngay 920-x)^2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện\[x \ge - 7\]

Đặt \[t = \sqrt {x + 7} \] điều kiện \[t \ge 0\]

Ta có\[\sqrt {{t^2} + 1 - 2t} = 2 - \sqrt {{t^2} - 6 - t} \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \]

Nếu \[t \ge 1\] thì ta có\[3 - t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 9 - 6t + {t^2}}\\{t \le 3}\end{array}} \right. \Leftrightarrow t = 3 \Leftrightarrow \sqrt {x + 7} = 3 \Leftrightarrow x = 2\]

Nếu t < 1  thì ta có \[1 + t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 1 + 2t + {t^2}}\\{t \ge - 1}\end{array}} \right. \Leftrightarrow t = - \frac{7}{3}\;\;\left( l \right)\]

Đáp án cần chọn là: B

</>

Lời giải

Gọi số nguyên lớn nhất bạn An có thể chọn là \[x\left( {x \in \mathbb{Z}} \right)\]

Theo bài ra ta có \[2\left( {4x - 30} \right) - 10\] là số có 2 chữ số.

\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{10 \le 2(4x - 30) - 10 \le 99}\\{ - 99 \le 2(4x - 30) - 10 \le - 10}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{20 \le 2(4x - 30) \le 109}\\{ - 89 \le 2(4x - 30) \le 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{10 \le 4x - 30 \le \frac{{109}}{2}}\\{ - \frac{{89}}{2} \le 4x - 30 \le 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{40 \le 4x \le \frac{{169}}{2}}\\{ - \frac{{29}}{2} \le 4x \le 30}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{10 \le x \le \frac{{169}}{8}}\\{ - \frac{{29}}{8} \le x \le \frac{{30}}{4}}\end{array}} \right.\)

Vì \[x \in \mathbb{Z}\] và x là số lớn nhất nên x=21.

Vậy số lớn nhất An có thể chọn có hàng đơn vị bằng 1.

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP