ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bất phương trình

981 lượt thi 42 câu hỏi 45 phút

Đề thi liên quan:

Danh sách câu hỏi:

Câu 1:

Tập nghiệm SS của bất phương trình \[5x - 1 \ge \frac{{2x}}{5} + 3\]là:

Xem đáp án

Câu 3:

Tập nghiệm của bất phương trình: \[ - {x^2} + 6x + 7\; \ge 0\;\] là:

Xem đáp án

Câu 4:

Giải bất phương trình \[ - 2{x^2} + 3x - 7 \ge 0.\].

Xem đáp án

Câu 5:

Cho bất phương trình \[{x^2} - 8x + 7 \ge 0\]. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

Xem đáp án

Câu 6:

Giải bất phương trình \[x\left( {x + 5} \right) \le 2\left( {{x^2} + 2} \right)\] ta được nghiệm:

Xem đáp án

Câu 7:

Cặp bất phương trình nào sau đây là tương đương?

Xem đáp án

Câu 8:

Xác định m để với mọi x ta có \[ - 1 \le \frac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\]

Xem đáp án

Câu 9:

Bất phương trình x13x+25<0 có nghiệm là

Xem đáp án

Câu 10:

Bất phương trình \[\sqrt { - {x^2} + 6x - 5} >8 - 2x\]có nghiệm là:

Xem đáp án

Câu 11:

Tập nghiệm SS của bất phương trình \[\frac{{ - \,2{x^2} + 7x + 7}}{{{x^2} - 3x - 10}} \le - 1\]là

Xem đáp án

Câu 17:

Xác định m để phương trình \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\] có ba nghiệm phân biệt lớn hơn –1.

Xem đáp án

Câu 18:

Để phương trình sau có 4 nghiệm phân biệt: \[\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\] thì giá trị của tham số a là:

Xem đáp án

Câu 20:

Để phương trình: \[\left| {x + 3} \right|(x - 2) + m - 1 = 0\] có đúng một nghiệm, các giá trị của tham số m là:

Xem đáp án

Câu 21:

Bất phương trình  \[\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \] có nghiệm là

Xem đáp án

Câu 22:

Tập nghiệm của bất phương trình \[\left| {x - 3} \right| >- 1\]là

Xem đáp án

Câu 23:

Tìm m để bất phương trình có nghiệm .

Xem đáp án

Câu 25:

Tập nghiệm của bất phương trình \[\left( {\sqrt {2x + 4} - \sqrt {x + 1} } \right)\left( {\sqrt {2x + 1} + \sqrt {x + 4} } \right) \le x + 3\] là tập con của tập hợp nào sau đây?

Xem đáp án

Câu 26:

Cho biểu thức \[f\left( x \right) = \left( {x + 5} \right)\left( {3 - x} \right).\]Tập hợp tất cả các giá trị của x thỏa mãn bất phương trình f(x) ≤ 0  là

Xem đáp án

Câu 27:

Bất phương trình : \[\left| {3x - 3} \right| \le \left| {2x + 1} \right|\] có nghiệm là

Xem đáp án

Câu 28:

 

Cho biểu thức \[f\left( x \right) = \frac{1}{{3x - 6}}.\] Tập hợp tất cả các giá trị của x để f(x) ≤ 0 là

Xem đáp án

Câu 29:

Cho biểu thức \[f\left( x \right) = \frac{{\left( {x + 3} \right)\left( {2 - x} \right)}}{{x - 1}}.\]. Tập hợp tất cả các giá trị của xx thỏa mãn bất phương trình f(x) >0 là

Xem đáp án

Câu 31:

Tập nghiệm của bất phương trình \[2x\left( {4 - x} \right)\left( {3 - x} \right)\left( {3 + x} \right) >0\]là

Xem đáp án

Câu 33:

Tập nghiệm của bất phương trình \[\frac{{{x^2} + x - 3}}{{{x^2} - 4}} \ge 1\] là

Xem đáp án

Câu 34:

Bất phương trình \[\frac{4}{{x - 1}} - \frac{2}{{x + 1}} < 0\]có tập nghiệm là

Xem đáp án

Câu 35:

Nghiệm của bất phương trình \[\left| {2x - 3} \right| \le 1\]là

Xem đáp án

Câu 40:

Bất phương trình \[\left| {x + 2} \right| - \left| {x - 1} \right| < x - \frac{3}{2}\]có tập nghiệm là

Xem đáp án

4.6

196 Đánh giá

50%

40%

0%

0%

0%