Câu hỏi:

23/05/2022 228

Xác định m để phương trình \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\] có ba nghiệm phân biệt lớn hơn –1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{{x^2} + 2(m + 3)x + 4m + 12 = 0( * )}\end{array}} \right.\)

Giả sử phương trình (∗) có hai nghiệm phân biệt \[{x_1},{x_2}\], theo Vi-et ta có\(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = - 2(m + 3)}\\{{x_1}.{x_2} = 4m + 12}\end{array}} \right.\)

Để phương trình \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\] có ba nghiệm phân biệt lớn hơn −1. thì phương trình (∗) có hai nghiệm phân biệt \[{x_1},{x_2}\] khác 1 và đều lớn hơn −1.

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime >0}\\{1 + 2(m + 3) + 4m + 12 \ne 0}\\{{x_2} >{x_1} >- 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{{(m + 3)}^2} - (4m + 12) >0}\\{6m + 19 \ne 0}\\{({x_1} + 1) + ({x_2} + 1) >0}\\{({x_1} + 1)({x_2} + 1) >0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} + 2m - 3 >0}\\{m \ne - \frac{{19}}{6}}\\{ - 2(m + 3) + 2 >0}\\{4m + 12 - 2(m + 3) + 1 >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{m >1}\\{m < - 3}\end{array}} \right.}\\{m \ne - \frac{{19}}{6}}\\{m < - 2}\\{m >- \frac{7}{2}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - \frac{7}{2} < m < - 3}\\{m \ne - \frac{{19}}{6}}\end{array}} \right.\)

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:\[\angle CAB + \angle BAD + \angle DAE = {180^o}\]

\[ \Rightarrow \angle CAB + \angle EAD = {90^o}\]

Mà \[\angle CAB + \angle CBA = {90^o}\] (\[\Delta CAB\]vuông tại C)

\[ \Rightarrow \angle CBA = \angle EAD\] kết hợp\[AB = AD\,\,\,\left( {gt} \right)\]

\[\begin{array}{*{20}{l}}{ \Rightarrow {\rm{\Delta }}CAB = {\rm{\Delta }}EDA\,\,\,\left( {ch - gn} \right)}\\{ \Rightarrow CB = EA = x \Rightarrow CA = CE - EA = 20 - x\,\,\,\,\left( {cm} \right)}\end{array}\]

Diện tích viên gạch là\[S = A{B^2} = C{B^2} + C{A^2} = {x^2} + {\left( {20 - x} \right)^2}\]

Vì \[S \le 208 \Leftrightarrow {x^2} + {\left( {20 - x} \right)^2} \le 208 \Leftrightarrow 2{x^2} - 40x + 192 \le 0 \Leftrightarrow 8 \le x \le 12\]

Đáp án cần chọn là: A

Lời giải

Điều kiện\[x \ge - 7\]

Đặt \[t = \sqrt {x + 7} \] điều kiện \[t \ge 0\]

Ta có\[\sqrt {{t^2} + 1 - 2t} = 2 - \sqrt {{t^2} - 6 - t} \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \]

Nếu \[t \ge 1\] thì ta có\[3 - t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 9 - 6t + {t^2}}\\{t \le 3}\end{array}} \right. \Leftrightarrow t = 3 \Leftrightarrow \sqrt {x + 7} = 3 \Leftrightarrow x = 2\]

Nếu t < 1  thì ta có \[1 + t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 1 + 2t + {t^2}}\\{t \ge - 1}\end{array}} \right. \Leftrightarrow t = - \frac{7}{3}\;\;\left( l \right)\]

Đáp án cần chọn là: B

</>

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP