Câu hỏi:

23/05/2022 215

Cho bất phương trình: \[{x^2} - 2x \le \left| {x - 2} \right| + ax - 6\]. Giá trị dương nhỏ nhất của a để bất phương trình có nghiệm gần nhất với số nào sau đây:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trường hợp 1:\[x \in \left[ {2; + \infty } \right)\]

Khi đó bất phương trình đã cho trở thành:

\[{x^2} - \left( {a + 3} \right)x + 8 \le 0 \Leftrightarrow a \ge x + \frac{8}{x} - 3 \ge 4\sqrt 2 - 3 \approx 2,65\forall x \in \left[ {2; + \infty } \right)\]

Dấu  xảy ra khi\[x = 2\sqrt 2 \]

Trường hợp 2:\[x \in \left( { - \infty ;2} \right)\]

Khi đó bất phương trình đã cho trở thành:

\[{x^2} - \left( {a + 1} \right)x + 4 \le 0\]

\[ \Leftrightarrow ax \ge {x^2} - x + 4\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a \ge \frac{{{x^2} - x + 4}}{x}\,\,khi\,\,x \in (0;2)}\\{a \le \frac{{{x^2} - x + 4}}{x}\,\,\,\,khi\,x \in ( - \infty ;0)}\end{array}} \right.\,\,\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a \ge x + \frac{4}{x} - 1\,\,\,khi\,\,\,x \in (0;2)\,\,\,\,\,(1)}\\{a \le x + \frac{4}{x} - 1\,\,\,khi\,\,\,x \in ( - \infty ;0)\,\,\,\,\,(2)}\end{array}} \right.\)

Giải (1) ta được a >3  (theo bất đẳng thức Cauchy).

Giải (2): \[a \le x + \frac{4}{x} - 1 \Leftrightarrow a \le - 2\sqrt {x.\frac{4}{x}} - 1 = - 5\]

Vậy giá trị dương nhỏ nhất của a gần với số 2,6.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có:\[\angle CAB + \angle BAD + \angle DAE = {180^o}\]

\[ \Rightarrow \angle CAB + \angle EAD = {90^o}\]

Mà \[\angle CAB + \angle CBA = {90^o}\] (\[\Delta CAB\]vuông tại C)

\[ \Rightarrow \angle CBA = \angle EAD\] kết hợp\[AB = AD\,\,\,\left( {gt} \right)\]

\[\begin{array}{*{20}{l}}{ \Rightarrow {\rm{\Delta }}CAB = {\rm{\Delta }}EDA\,\,\,\left( {ch - gn} \right)}\\{ \Rightarrow CB = EA = x \Rightarrow CA = CE - EA = 20 - x\,\,\,\,\left( {cm} \right)}\end{array}\]

Diện tích viên gạch là\[S = A{B^2} = C{B^2} + C{A^2} = {x^2} + {\left( {20 - x} \right)^2}\]

Vì \[S \le 208 \Leftrightarrow {x^2} + {\left( {20 - x} \right)^2} \le 208 \Leftrightarrow 2{x^2} - 40x + 192 \le 0 \Leftrightarrow 8 \le x \le 12\]

Đáp án cần chọn là: A

Lời giải

Điều kiện\[x \ge - 7\]

Đặt \[t = \sqrt {x + 7} \] điều kiện \[t \ge 0\]

Ta có\[\sqrt {{t^2} + 1 - 2t} = 2 - \sqrt {{t^2} - 6 - t} \Leftrightarrow \left| {t - 1} \right| = 2 - \sqrt {{t^2} - t - 6} \]

Nếu \[t \ge 1\] thì ta có\[3 - t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 9 - 6t + {t^2}}\\{t \le 3}\end{array}} \right. \Leftrightarrow t = 3 \Leftrightarrow \sqrt {x + 7} = 3 \Leftrightarrow x = 2\]

Nếu t < 1  thì ta có \[1 + t = \sqrt {{t^2} - t - 6} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{t^2} - t - 6 = 1 + 2t + {t^2}}\\{t \ge - 1}\end{array}} \right. \Leftrightarrow t = - \frac{7}{3}\;\;\left( l \right)\]

Đáp án cần chọn là: B

</>

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP