Câu hỏi:

17/05/2022 173

Tìm m để bất phương trình có nghiệm .

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:\[( * ) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 - \frac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}} < 0}\\{x >{m^2} + m}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{\left( {x - 2} \right)\left( {3{x^2} + 3x - 4} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - 3} \right)}} < 0}\\{x >{m^2} + m}\end{array}} \right.\left( {**} \right)\]

Bảng xét dấu:

Tìm m để bất phương trình có nghiệm .Ta có:\[( * ) \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 - \frac{{x + 1}}{{{x^3} - {x^2} - 3x + 3}} < 0}\\{x >{m^2} + m}\end{array}} \right. \Left (ảnh 1)

Tập nghiệm của bất phương trình \[\frac{{\left( {x - 2} \right)\left( {3{x^2} + 3x - 4} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - 3} \right)}} < 0\] là\[S = \left( {\frac{{ - 3 - \sqrt {57} }}{6}; - \sqrt 3 } \right) \cup \left( {\frac{{ - 3 + \sqrt {57} }}{6};1} \right) \cup \left( {\sqrt 3 ;2} \right)\]

Do đó bất phương trình (∗) có nghiệm khi và chỉ khi hệ bất phương trình(∗∗) có nghiệm \[ \Leftrightarrow {m^2} + m < 2 \Leftrightarrow {m^2} + m - 2 < 0 \Leftrightarrow - 2 < m < 1\]

Vậy\[ - 2 < m < 1\] là giá trị cần tìm.

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.

 Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.Tìm tập hợp các giá trị của x để diện tích v (ảnh 1)

Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm2.

 Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.Tìm tập hợp các giá trị của x để diện tích v (ảnh 2)

Xem đáp án » 17/05/2022 13,152

Câu 2:

Bạn An chọn một số nguyên, nhân số đó với 4 rồi trừ đi 30. Lấy kết quả có được nhân với 2 và cuối cùng trừ đi 10 thì được một số có hai chữ số. Số lớn nhất An có thể chọn được có hàng đơn vị bằng:

Xem đáp án » 17/05/2022 1,469

Câu 3:

Tổng các nghiệm nguyên của bất phương trình \[x\left( {2 - x} \right) \ge x\left( {7 - x} \right) - 6\left( {x - 1} \right)\] trên đoạn \[\left[ { - 10;10} \right]\;\]bằng:

Xem đáp án » 23/05/2022 632

Câu 4:

Để phương trình sau có 4 nghiệm phân biệt: \[\left| {10x - 2{x^2} - 8} \right| = {x^2} - 5x + a\] thì giá trị của tham số a là:

Xem đáp án » 23/05/2022 590

Câu 5:

Bất phương trình \[\sqrt { - {x^2} + 6x - 5} >8 - 2x\]có nghiệm là:

Xem đáp án » 23/05/2022 579

Câu 6:

Tổng các nghiệm nguyên của bất phương trình \(\frac{{x - 2}}{{\sqrt {x - 4} }} \le \frac{4}{{\sqrt {x - 4} }}\) bằng:

Xem đáp án » 23/05/2022 565

Câu 7:

Tích của nghiệm nguyên âm lớn nhất và nghiệm nguyên dương nhỏ nhất của bất phương trình \[\left( {3x - 6} \right)\left( {x - 2} \right)\left( {x + 2} \right)\left( {x - 1} \right) >0\] là

Xem đáp án » 23/05/2022 398

Bình luận


Bình luận