Câu hỏi:

23/05/2022 228

Biết rằng tồn tại các giá trị của \[x \in \left[ {0;2\pi } \right]\] để ba số \[1 + sinx,si{n^2}x,1 + sin3x\;\]lập thành một cấp số cộng, tính tổng S các giá trị đó của x.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

\[\begin{array}{l}1 + sinx + 1 + sin3x = 2si{n^2}x\\ \Leftrightarrow 2 + sinx + 3sinx - 4si{n^3}x = 2si{n^2}x\\ \Leftrightarrow 4si{n^3}x + 2si{n^2}x - 4sinx - 2 = 0\end{array}\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = \pm 1}\\{sinx = - \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{cosx = 0}\\{sinx = - \frac{1}{2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2} + k\pi }\\\begin{array}{l}x = - \frac{\pi }{6} + k2\pi \\x = \frac{{7\pi }}{6} + k2\pi \end{array}\end{array}} \right.\,\,\,\,(k \in Z)\)

\[ + )x = \frac{\pi }{2} + k\pi (k \in Z);x \in [0;2\pi ] \Rightarrow 0 \le \frac{\pi }{2} + k\pi \le 2\pi \]

\[ \Leftrightarrow - \frac{1}{2} \le k \le \frac{3}{2}\mathop \Leftrightarrow \limits^{k \in Z} \left\{ {\begin{array}{*{20}{c}}{k = 0}\\{k = 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{\pi }{2}}\\{x = \frac{{3\pi }}{2}}\end{array}} \right.\]

\[ + )x = - \frac{\pi }{6} + k2\pi (k \in Z);x \in [0;2\pi ] \Rightarrow 0 \le - \frac{\pi }{6} + k2\pi \le 2\pi \]

\[ \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\mathop \Leftrightarrow \limits^{k \in Z} k = 1 \Rightarrow x = \frac{{11\pi }}{6}\]

\[ + )x = \frac{{7\pi }}{6} + k2\pi (k \in Z);x \in [0;2\pi ] \Rightarrow 0 \le \frac{{7\pi }}{6} + k2\pi \le 2\pi \]

\[ \Leftrightarrow \frac{{ - 7}}{{12}} \le k \le \frac{5}{{12}}\mathop \Leftrightarrow \limits^{k \in Z} k = 0 \Rightarrow x = \frac{{7\pi }}{6}\]

\[ \Rightarrow S = \frac{\pi }{2} + \frac{{3\pi }}{2} + \frac{{11\pi }}{6} + \frac{{7\pi }}{6} = 5\pi \]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng 2;5;8;11;14... Công sai của cấp số cộng đã cho bằng

Xem đáp án » 23/05/2022 6,022

Câu 2:

Viết sáu số xen giữa 3 và 24 để được một cấp số cộng có 88 số hạng. Sáu số hạng cần viết thêm là :

Xem đáp án » 23/05/2022 1,079

Câu 3:

Cho cấp số cộng \[\left( {{x_n}} \right)\]có \[{x_3} + {x_{13}} = 80\].  Tính tổng S15 của 15 số hạng đầu tiên của cấp số cộng đó?

Xem đáp án » 23/05/2022 1,044

Câu 4:

Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : \[{x^3} - 3m{x^2} + 2m(m - 4)x + 9{m^2} - m = 0\;\]?

Cách 1: Giải bài toán bằng cách tự luận:

Giả sử phương trình có ba nghiệm phân biệt\[{x_1},{x_2},{x_3}\] lập thành một cấp số cộng. Theo định lí Vi-et ta có\[{x_1} + {x_2} + {x_3} = - \frac{b}{a} = 3m\]

Vì\[{x_1},{x_2},{x_3}\] lập thành một cấp số cộng nên

\[{x_1} + {x_3} = 2{x_2} \Rightarrow {x_1} + {x_2} + {x_3} = 3{x_2} = 3m \Leftrightarrow {x_2} = m\]

Thay\[{x_2} = m\] vào phương trình ban đầu ta được

\[{m^3} - 3{m^3} + 2{m^2}(m - 4) + 9{m^2} - m = {m^2} - m = 0\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 1}\end{array}} \right.\)

Thử lại:

Khi m=0 , phương trình trở thành\[{x^3} = 0 \Leftrightarrow x = 0\]  phương trình có nghiệm duy nhất (loại)

Khi m=1 , phương trình trở thành\[{x^3} - 3{x^2} - 6x + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 1}\\{x = 4}\end{array}} \right.\] Dễ thấy −2,1,4−2,1,4 lập thành 1 cấp số cộng có công sai d=3.

Vậy m=1 thỏa mãn yêu cầu bài toán.

Cách 2: Giải bài toán bằng cách trắc nghiệm.

Thử lần lượt từng đáp án. Trước hết ta thử đáp án A và D vì mm nguyên.

Khi m=0 ta có phương trình\[{x^3} = 0 \Leftrightarrow x = 0\] phương trình có nghiệm duy nhất (loại)

Khi m=1 phương trình trở thành \[{x^3} - 3{x^2} - 6x + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 1}\\{x = 4}\end{array}} \right.\] Dễ thấy −2,1,4 lập thành 1 cấp số cộng có công sai d=3 .

Vậy m=1 thỏa mãn yêu cầu bài toán.

Xem đáp án » 23/05/2022 698

Câu 5:

Một người làm việc cho một công ty. Theo hợp đồng trong năm đầu tiên, tháng lương thứ nhất là 6 triệu đồng và lương tháng sau cao hơn tháng trước là 200 ngàn đồng. Hỏi theo hợp đồng tháng thứ 7 người đó nhận được lương là bao nhiêu?

Xem đáp án » 23/05/2022 532

Câu 6:

Cho cấp số cộng \[6;x; - 2;y\]. Khẳng định nào sau đây đúng ?

Xem đáp án » 23/05/2022 482

Câu 7:

Cho ba số dương a,b,c thỏa mãn điều kiện \[\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt a + \sqrt b }},\frac{2}{{\sqrt c + \sqrt a }}\] lập thành một cấp số cộng. Mệnh đề nào dưới đây là đúng ?

Xem đáp án » 23/05/2022 425

Bình luận


Bình luận