Câu hỏi:
23/05/2022 1,634
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Bước 1: Tìm cấp số nhân
Ta có:
\[\begin{array}{l}{{\rm{S}}_1} = {a^2}\\{{\rm{S}}_2} = {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = {a^2} \cdot \frac{1}{2}\\{{\rm{S}}_3} = {\left( {\frac{{a\sqrt 2 }}{2} \cdot \frac{{\sqrt 2 }}{2}} \right)^2}\\ \cdots \\{{\rm{S}}_{\rm{n}}} = {a^2} \cdot {\left( {\frac{1}{2}} \right)^{n - 1}}\end{array}\]
Có\[{S_1};{S_2};{S_3}; \ldots \] là một cấp số nhân lùi vô hạn với:
- Số hạng đầu:\[{S_1} = {a^2}\]
- Công bội:\[q = \frac{1}{2}\]
Bước 2: Sử dụng công thức tổng cấp số nhân lùi vô hạn
Do đó:\[S = {S_1} + {S_2} + {S_3} + \ldots = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{1}{2}}} = 2{a^2}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].
Câu 3:
Cho \[{u_n} = \frac{{1 - 4n}}{{5n}}\]. Khi đó \[lim\,{u_n}\]bằng?
Câu 5:
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]
Khi đó \[lim\,{u_n}\] bằng?
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!