Câu hỏi:

25/06/2022 391

Cho hàm số \[f\left( x \right) = \tan \left( {x - \frac{{2\pi }}{3}} \right)\]. Giá trị f′(0) bằng:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[f(x) = tan(x - \frac{{2\pi }}{3}) = \frac{{tanx - tan\frac{{2\pi }}{3}}}{{1 + tanx.tan\frac{{2\pi }}{3}}} = \frac{{tanx + \sqrt 3 }}{{1 - \sqrt 3 tanx}}.(tanx + \sqrt 3 )\prime (1 - \sqrt 3 tanx)\]

\[f\prime (x) = \frac{{ - (tanx + \sqrt 3 )(1 - \sqrt 3 tanx)\prime }}{{{{\left( {1 - \sqrt 3 tanx} \right)}^2}}}\]

\[f\prime (x) = \frac{{\frac{1}{{co{s^2}x}}(1 - \sqrt 3 tanx) - (tanx + \sqrt 3 )( - \frac{{\sqrt 3 }}{{co{s^2}x}})}}{{{{(1 - \sqrt 3 tanx)}^2}}}\]

\[f\prime (x) = \frac{{\frac{1}{{co{s^2}x}} - \frac{{\sqrt 3 tanx}}{{co{s^2}x}} + \frac{{\sqrt 3 tanx}}{{co{s^2}x}} + \frac{3}{{co{s^2}x}}}}{{{{(1 - \sqrt 3 tanx)}^2}}}\]

\(f\prime (x) = \frac{4}{{co{s^2}x{{(1 - \sqrt 3 tanx)}^2}}}\)

\[ \Rightarrow f\prime (0) = \frac{4}{{1\left( {1 - \sqrt 3 .0} \right)}} = 4\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính đạo hàm của hàm số \[y = (3x - 1)\sqrt {{x^2} + 1} \]

Xem đáp án » 25/06/2022 6,354

Câu 2:

Cho hàm số \[y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\]. Đạo hàm y’ của hàm số là:

Xem đáp án » 25/06/2022 2,418

Câu 3:

Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai

Xem đáp án » 25/06/2022 1,217

Câu 4:

Cho hàm số \[y = \sqrt {10x - {x^2}} \]. Giá trị của y′(2) bằng

Xem đáp án » 25/06/2022 976

Câu 5:

Cho hàm số \[f\left( x \right) = \sqrt[3]{x}\]. Giá trị của  f′(8) bằng:

Xem đáp án » 25/06/2022 557

Câu 6:

Cho hàm số \[f(x) = {(2x - 1)^3}\]. Giá trị của f′(1) bằng

Xem đáp án » 25/06/2022 455

Câu 7:

Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]

Xem đáp án » 25/06/2022 406

Bình luận


Bình luận