Câu hỏi:
25/06/2022 882Cho hàm số \[y = \sqrt {10x - {x^2}} \]. Giá trị của y′(2) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1:
\[\begin{array}{*{20}{l}}{y' = \frac{{{{\left( {10x - {x^2}} \right)}^\prime }}}{{2\sqrt {10x - {x^2}} }} = \frac{{10 - 2x}}{{2\sqrt {10x - {x^2}} }}}\\{ = \frac{{5 - x}}{{\sqrt {10x - {x^2}} }}}\end{array}\]
Bước 2:
Thay x=2 vào y′:
\[y'(2) = \frac{{5 - 2}}{{\sqrt {10 \cdot 2 - {2^2}} }} = \frac{3}{4}\]
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \[y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\]. Đạo hàm y’ của hàm số là:
Câu 3:
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Câu 4:
Cho hàm số \[f\left( x \right) = \sqrt[3]{x}\]. Giá trị của f′(8) bằng:
Câu 5:
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Câu 6:
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
về câu hỏi!