Câu hỏi:
27/06/2022 501Số nghiệm thực phân biệt của phương trình \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\]là:
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện : \[x \ne 0\]
Với x<0 ta có\(\left\{ {\begin{array}{*{20}{c}}{x + \frac{1}{{4x}} < 0}\\{\frac{x}{4} + \frac{1}{x} < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{2^{x + \frac{1}{{4x}}}} < 1}\\{{2^{\frac{x}{4} + \frac{1}{x}}} < 1}\end{array}} \right. \Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} < 2\)
⇒ Phương trình không có nghiệm x<0
Với x > 0, áp dụng bất đẳng thức Côsi cho hai số dương ta được.
\(\left\{ {\begin{array}{*{20}{c}}{x + \frac{1}{{4x}} \ge 2\sqrt {x.\frac{1}{{4x}}} = 1}\\{\frac{x}{4} + \frac{1}{x} \ge 2\sqrt {\frac{x}{4}.\frac{1}{x}} = 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{2^{x + \frac{1}{{4x}}}} \ge 2}\\{{2^{\frac{x}{4} + \frac{1}{x}}} \ge 2}\end{array}} \right. \Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} \ge 4\)
Dấu “=” xảy ra khi và chỉ khi\(\left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{{4x}}}\\{\frac{x}{4} = \frac{1}{x}}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4{x^2} = 1}\\{{x^2} = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} = \frac{1}{4}}\\{{x^2} = 4}\end{array}} \right.\)(không xảy ra)
Vậy \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} > 4\]nên phương trình vô nghiệm
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Đề thi THPT QG - 2021 - mã 101
Có bao nhiêu số nguyên y sao cho tồn tại \[x \in (\frac{1}{3};3)\;\] thỏa mãn \[27{\,^{3{x^2} + xy}} = \left( {1 + xy} \right){27^{9x}}\]?
Câu 4:
Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:
Câu 5:
Phương trình \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng
Câu 6:
Cho \[{4^x} + {4^{ - x}} = 7\]. Khi đó biểu thức \[P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \frac{a}{b}\] với \[\frac{a}{b}\] tối giản và \[a,b \in \mathbb{Z}\]. Tích a.b có giá trị bằng
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 5 đề thi Đánh giá năng lực trường ĐHQG Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 5)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!