Câu hỏi:

27/06/2022 501

Số nghiệm thực phân biệt của phương trình \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\]là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện : \[x \ne 0\]

Với x<0  ta có\(\left\{ {\begin{array}{*{20}{c}}{x + \frac{1}{{4x}} < 0}\\{\frac{x}{4} + \frac{1}{x} < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{2^{x + \frac{1}{{4x}}}} < 1}\\{{2^{\frac{x}{4} + \frac{1}{x}}} < 1}\end{array}} \right. \Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} < 2\)

⇒ Phương trình không có nghiệm x<0

Với x > 0, áp dụng bất đẳng thức Côsi cho hai số dương ta được.

\(\left\{ {\begin{array}{*{20}{c}}{x + \frac{1}{{4x}} \ge 2\sqrt {x.\frac{1}{{4x}}} = 1}\\{\frac{x}{4} + \frac{1}{x} \ge 2\sqrt {\frac{x}{4}.\frac{1}{x}} = 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{2^{x + \frac{1}{{4x}}}} \ge 2}\\{{2^{\frac{x}{4} + \frac{1}{x}}} \ge 2}\end{array}} \right. \Rightarrow {2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} \ge 4\)

Dấu “=” xảy ra khi và chỉ khi\(\left\{ {\begin{array}{*{20}{c}}{x = \frac{1}{{4x}}}\\{\frac{x}{4} = \frac{1}{x}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4{x^2} = 1}\\{{x^2} = 4}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} = \frac{1}{4}}\\{{x^2} = 4}\end{array}} \right.\)(không xảy ra)

Vậy \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} > 4\]nên phương trình vô nghiệm

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 27/06/2022 5,164

Câu 2:

Đề thi THPT QG - 2021 - mã 101

Có bao nhiêu số nguyên y sao cho tồn tại \[x \in (\frac{1}{3};3)\;\] thỏa mãn \[27{\,^{3{x^2} + xy}} = \left( {1 + xy} \right){27^{9x}}\]?

Xem đáp án » 27/06/2022 1,031

Câu 3:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 27/06/2022 1,014

Câu 4:

Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:

Xem đáp án » 27/06/2022 599

Câu 5:

Phương trình  \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng

Xem đáp án » 27/06/2022 467

Câu 6:

Cho \[{4^x} + {4^{ - x}} = 7\]. Khi đó biểu thức \[P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \frac{a}{b}\] với \[\frac{a}{b}\] tối giản và \[a,b \in \mathbb{Z}\]. Tích a.b có giá trị bằng

Xem đáp án » 27/06/2022 418

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store