Câu hỏi:

27/06/2022 1,174

Đề thi THPT QG - 2021 - mã 101

Có bao nhiêu số nguyên y sao cho tồn tại \[x \in (\frac{1}{3};3)\;\] thỏa mãn \[27{\,^{3{x^2} + xy}} = \left( {1 + xy} \right){27^{9x}}\]?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* pt \[ \Leftrightarrow 27{\,^{3{x^2} + xy - 9x}} = xy + 1\]

\[ \Rightarrow xy + 1 > 0 \Leftrightarrow y > - \frac{1}{x}khix \in \left( {\frac{1}{3};3} \right) \Rightarrow y > - 3\] thì mới tồn tại\[x \in \left( {\frac{1}{3};3} \right)\]

⇒ Ta chặn được\[y > - 3 \Rightarrow y \ge - 2\]

\[*pt \Leftrightarrow {27^{3{x^2} + xy - 9x}} - xy - 1 = 0\]

Đặt \[f\left( x \right) = g\left( y \right) = {27^{3{x^2} + xy - 9x}} - xy - 1\] ta có\(\left\{ {\begin{array}{*{20}{c}}{f(\frac{1}{3}) = {3^{y - 8}} - \frac{y}{3} - 1}\\{f(3) = {{27}^{3y}} - 3y - 1}\end{array}} \right.\)

Nhận thấy ngay\[f\left( 3 \right) \ge 0\,\,\forall y \in \mathbb{Z}\] chỉ bằng 0 tại y=0

+ Xét y=0⇒ thay vào phương trình ban đầu ⇒\(\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 3}\end{array}} \right.\) loại vì không có nghiệm thuộc \[\left( {\frac{1}{3};3} \right)\]

+ Xét\[y \ne 0 \Rightarrow f\left( 3 \right) > 0\,\,\forall x \in {\mathbb{Z}^ * }\]

1) Ta Table khảo sát\[f\left( {\frac{1}{3}} \right)\] với\(\left\{ {\begin{array}{*{20}{c}}{Start:y = - 2}\\{End:y = 17}\\{Step: = 1}\end{array}} \right.\)

\[ \Rightarrow f\left( {\frac{1}{3}} \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;9} \right\}\]

\[ \Rightarrow f\left( {\frac{1}{3}} \right).f\left( 3 \right) < 0\,\,\forall y \in \left\{ { - 2; - 1;1;2;...;9} \right\}\]

⇒ Có 11 giá trị của yy để tồn tại nghiệm

2) Từ bảng Table ta nhận thấy khi\[y \ge 10\] thì \[f\left( {\frac{1}{3}} \right) > 0\] và đồng biến.

Ta đi chứng minh khi \[y \ge 10\] thì phương trình vô nghiệm.

\[g\prime (y) = x({27^{3{x^2} + x(y - 9)}}.ln27 - 1) > 0\left\{ {\begin{array}{*{20}{c}}{\forall y \ge 10}\\{x \in \left( {\frac{1}{3};3} \right)}\end{array}} \right.\]

\[ \Rightarrow g\left( y \right) \ge g\left( {10} \right) = {27^{3{x^2} + x}} - 10x - 1 = h\left( x \right)\]

Ta có\[h'\left( x \right) = {27^{3{x^2} + x}}\left( {6x + 1} \right)\ln 27 - 10 > 0\,\,\forall x \in \left( {\frac{1}{3};3} \right)\]

\[ \Rightarrow h\left( x \right) > h\left( {\frac{1}{3}} \right) = \frac{{14}}{3} > 0\]

⇒ Phương trình vô nghiệm với\[x \in \left( {\frac{1}{3};3} \right)\]Vậy đáp số có 11 giá trị nguyên của yy.

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 27/06/2022 9,258

Câu 2:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 27/06/2022 1,553

Câu 3:

Số nghiệm thực phân biệt của phương trình \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\]là:

Xem đáp án » 27/06/2022 1,115

Câu 4:

Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:

Xem đáp án » 27/06/2022 749

Câu 5:

Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].

Xem đáp án » 27/06/2022 684

Câu 6:

Phương trình  \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng

Xem đáp án » 27/06/2022 544
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua