Câu hỏi:
28/06/2022 542Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)?
Câu hỏi trong đề: ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bài toán lãi kép !!
Quảng cáo
Trả lời:
Gọi số tiền ông An gửi vào ngân hàng ACB và VietinBank lần lượt là : a, b (triệu đồng,\[0 < a,\,\,b < 320\])
\[ \Rightarrow a + b = 320\](1)
Đổi 15 tháng = 5 quý.
Số tiền ông An nhận được từ ngân hàng ACB sau 15 tháng là:
\[a.{\left( {1 + 2,1{\rm{\% }}} \right)^5} = 1,{021^5}a\](triệu đồng)
Số tiền ông An nhận được từ ngân hàng VietinBank sau 9 tháng là:
\[b.{\left( {1 + 0,73{\rm{\% }}} \right)^9} = 1,{0073^9}b\](triệu đồng)
Vì tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng nên ta có phương trình:\[1,{021^5}a + 1,{0073^9}b = 320 + 26,67072595\] (2)
Từ (1), (2) ta có hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{a + b = 320}\\{1,{{021}^5}a + 1,{{0073}^9}b = 320 + 26,67072595}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 120}\\{b = 200}\end{array}} \right.(tm)\)
Vậy số tiền ông An gửi vào ngân hàng ACB và VietinBank lần lượt là 120 triệu đồng và 200 triệu đồng.
Đáp án cần chọn là: A
>- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có:
\[\begin{array}{*{20}{l}}{A = 1.000.000}\\{r = 0,65{\rm{\% }}}\\{N = 2.12 = 24}\end{array}\]
Vậy \[T = A{\left( {1 + r} \right)^N} = 1.000.000{\left( {1 + 0,65:100} \right)^{24}} = 1.168.236\]
Đáp án cần chọn là: B
Lời giải
Ta có:
\[\begin{array}{*{20}{l}}{A = 2.000.000}\\{r = 0,48{\rm{\% }}}\\{m = 3}\\{N = \frac{{3.12}}{3} = 12}\end{array}\]
Vậy \[T = A{\left( {1 + mr} \right)^N} = 2.000.000{\left( {1 + 3.0,48{\rm{\% }}} \right)^{12}} = 2.374.329\](đồng).
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.