Câu hỏi:

29/06/2022 430

Cho số phức \[z = 1 + i + {i^2} + {i^3} + ... + {i^9}\]. Khi đó:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[z = 1 + i + {i^2} + {i^3} + ... + {i^9} = 1 + i - 1 - i + 1 + i - 1 - i + 1 + i = 1 + i\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:

Xem đáp án » 29/06/2022 1,612

Câu 2:

Cho số phức \[z = 1 + \sqrt 3 i\]. Khi đó

Xem đáp án » 29/06/2022 1,349

Câu 3:

Số phức liên hợp của số phức \[z = a - bi\] là:

Xem đáp án » 29/06/2022 593

Câu 4:

Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]

Xem đáp án » 29/06/2022 447

Câu 5:

Số phức \[z = a + bi\;\] có phần thực là:

Xem đáp án » 29/06/2022 366

Câu 6:

Số phức \[z = \sqrt 2 i - 1\] có phần thực là:

Xem đáp án » 29/06/2022 333

Bình luận


Bình luận