Câu hỏi:
29/06/2022 1,076Cho lăng trụ đứng ABC.A′B′C′ với ABC là tam giác vuông cân tại C có AB=a , mặt bên ABB′A′ là hình vuông. Mặt phẳng qua trung điểm I của AB và vuông góc với AB′ chia khối lăng trụ thành 2 phần. Tính thể tích mỗi phần?
Quảng cáo
Trả lời:
Gọi D là trung điểm của AA′ ta có ID là đường trung bình của tam giác
\[AA'B \Rightarrow ID//A'B\]
Mà\[A'B \bot AB'\] (do ABB′A′ là hình vuông)
\[ \Rightarrow ID \bot AB'\]
Tam giác ABC vuông cân tại CC nên \[IC \bot AB\]. Mà\[AA' \bot \left( {ABC} \right) \Rightarrow AA' \bot IC\]
\[ \Rightarrow IC \bot \left( {ABB'A'} \right) \Rightarrow IC \bot AB'\]
\[ \Rightarrow AB' \bot \left( {ICD} \right)\]
⇒ Mặt phẳng qua I và vuông góc với AB′ là (ICD)
Tam giác ABC vuông cân tại C nên
\[AC = BC = \frac{{AB}}{{\sqrt 2 }} = \frac{a}{{\sqrt 2 }} \Rightarrow {S_{ABC}} = \frac{1}{2}AC.BC = \frac{1}{2}\frac{a}{{\sqrt 2 }}\frac{a}{{\sqrt 2 }} = \frac{{{a^2}}}{4}\]
\[ABB'A'\] là hình vuông\[ \Rightarrow AA' = AB = a\]
\[ \Rightarrow {V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = a.\frac{{{a^2}}}{4} = \frac{{{a^3}}}{4} = V\]
Ta có:
\[{V_{D.ACI}} = \frac{1}{3}AD.{S_{ACI}} = \frac{1}{3}.\frac{1}{2}AA'.\frac{1}{2}{S_{ABC}} = \frac{1}{{12}}{V_{ABC.A'B'C'}} = \frac{1}{{12}}.\frac{{{a^3}}}{4} = \frac{{{a^3}}}{{48}} = {V_1}\]
\[ \Rightarrow {V_2} = V - {V_1} = \frac{{{a^3}}}{4} - \frac{{{a^3}}}{{48}} = \frac{{11{a^3}}}{{48}}\]
Đáp án cần chọn là: C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cạnh của khối lập phương đã cho là:\[a = \sqrt[3]{{27}} = 3.\]
⇒ Diện tích toàn phần của khối lập phương đã cho là:\[{6.3^2} = 54.\]
Đáp án cần chọn là: D
Lời giải
Chọn\[AD = BE = CF = \frac{5}{3}\] thì đa diện là hình lăng trụ đứng\[ABC.DEF\] có diện tích đáy\[{S_{ABC}} = 10\] và chiều cao\[AD = \frac{5}{3}\]
Thể tích\[V = {S_{ABC}}.AD = 10.\frac{5}{3} = \frac{{50}}{3}\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.