Cho hình lăng trụ tam giác đều ABC.A′B′C′có AB=a, đường thẳng A′B tạo với mặt phẳng \[(BCC\prime B\prime )\;\]một góc 300. Tính thể tích khối lăng trụ ABC.A′B′C′.
A.\[\frac{{3{a^3}}}{2}\]
B. \[\frac{{{a^3}\sqrt 6 }}{4}\]
C. \[\frac{{3{a^3}}}{4}\]
D. \[\frac{{{a^3}\sqrt 3 }}{4}\]
Quảng cáo
Trả lời:

Gọi M là trung điểm của\[B'C'\].Vì\[{\rm{\Delta }}A'B'C'\]đều nên\[A'M \bot B'C'\]
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{A\prime M \bot B\prime C\prime }\\{A\prime M \bot BB\prime (BB\prime \bot (A\prime B\prime C\prime ))}\end{array}} \right. \Rightarrow A\prime M \bot (BCC\prime B\prime )\)
⇒BM là hình chiếu của A′M lên (BCC′B′)
\[ \Rightarrow \angle \left( {A'B;\left( {BCC'B'} \right)} \right) = \angle \left( {A'B;MB} \right) = \angle A'BM = {30^0}\]
Theo bài ra ta có \[{\rm{\Delta }}A'B'C'\] đều cạnh aa nên\[A'M = \frac{{a\sqrt 3 }}{2}\]và\[{S_{{\rm{\Delta }}A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4}\]
Ta có:\[A'M \bot \left( {BCC'B'} \right) \Rightarrow A'M \bot BM \Rightarrow {\rm{\Delta }}A'BM\] vuông tại M
\[ \Rightarrow BM = A'M.\cot {30^0} = \frac{{3a}}{2}\]
Áp dụng định lí Pytago trong tam giác vuông BB′M ta có:
\[BB' = \sqrt {B{M^2} - B{B^{\prime 2}}} = \sqrt {{{\left( {\frac{{3a}}{2}} \right)}^2} - {{\left( {\frac{a}{2}} \right)}^2}} = a\sqrt 2 \]
Vậy \[{V_{ABC.A'B'C'}} = BB'.{S_{A'B'C'}} = a\sqrt 2 .\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 6 }}{4}\]
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.75
B.36
C.18
D.54
Lời giải
Cạnh của khối lập phương đã cho là:\[a = \sqrt[3]{{27}} = 3.\]
⇒ Diện tích toàn phần của khối lập phương đã cho là:\[{6.3^2} = 54.\]
Đáp án cần chọn là: D
Câu 2
A.50
B. \[\frac{{15}}{2}\]
C. \[\frac{{50}}{3}\]
D. \[\frac{{15}}{4}\]
Lời giải
Chọn\[AD = BE = CF = \frac{5}{3}\] thì đa diện là hình lăng trụ đứng\[ABC.DEF\] có diện tích đáy\[{S_{ABC}} = 10\] và chiều cao\[AD = \frac{5}{3}\]
Thể tích\[V = {S_{ABC}}.AD = 10.\frac{5}{3} = \frac{{50}}{3}\]
Đáp án cần chọn là: C
Câu 3
A.\[\frac{V}{2}\]
B. \[\frac{{2V}}{3}\]
C. \[\frac{V}{3}\]
D. \[\frac{{3V}}{4}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\frac{{{a^3}}}{4}\]
B. \[\frac{{{a^3}\sqrt 2 }}{2}\]
C. \[\frac{{{a^3}\sqrt 2 }}{4}\]
D. \[\frac{{{a^3}}}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[{V_1} = \frac{{{a^3}}}{{48}},{V_2} = \frac{{11{a^3}}}{{24}}\]
B. \[{V_1} = \frac{{{a^3}}}{{24}},{V_2} = \frac{{11{a^3}}}{{48}}\]
C. \[{V_1} = \frac{{{a^3}}}{{48}},{V_2} = \frac{{11{a^3}}}{{48}}\]
D. \[{V_1} = \frac{{{a^3}}}{{24}},{V_2} = \frac{{5{a^3}}}{{24}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\[\frac{{{a^3}\sqrt 3 }}{3}\]
B. \[\frac{{8{a^3}}}{3}\]
C. \[\frac{{{a^3}\sqrt 3 }}{8}\]
D. \[\frac{{{a^3}\sqrt 3 }}{2}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.\[\frac{{3{a^3}\sqrt 3 }}{8}\]
B. \[\frac{{{a^3}\sqrt 3 }}{8}\]
C. \[\frac{{3{a^3}}}{8}\]
d. \[\frac{{{a^3}}}{8}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.