Câu hỏi:

30/06/2022 396

Trong không gian với hệ tọa độ Oxyz cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\] và 2 đường thẳng \({\Delta _1}:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\)và \({\Delta _2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{1} = \frac{z}{{ - 1}}\). Một phương trình mặt phẳng (P) song song với \[{\Delta _1},{\Delta _2}\;\] và tiếp xúc với mặt cầu (S) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(S) có tâm\[I(1; - 1; - 2);R = 2\]

Vì (P) song song với \[{{\rm{\Delta }}_1},{{\rm{\Delta }}_2}\] có vtcp tương ứng là\[\overrightarrow {{u_1}} = \left( {2; - 1;1} \right);\overrightarrow {{u_2}} = \left( { - 1;1; - 1} \right)\]

 ta có \[\overrightarrow {{n_P}} = [\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\1&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&1\end{array}} \right|} \right) = (0;1;1)\]

Gọi\[(P):y + z + d = 0\]

\[d(I;P) = \frac{{| - 1 - 2 + d|}}{{\sqrt 2 }} = \frac{{|d - 3|}}{{\sqrt 2 }}\]

\(\begin{array}{l} \Rightarrow \frac{{|d - 3|}}{{\sqrt 2 }} = 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d - 3 = 2\sqrt 2 }\\{d - 3 = - 2\sqrt 2 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{d = 3 + 2\sqrt 2 }\\{d = 3 - 2\sqrt 2 }\end{array}} \right.\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{y + z + 3 + 2\sqrt 2 = 0}\\{y + z + 3 - 2\sqrt 2 = 0}\end{array}} \right.\end{array}\)

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ I đến (P)  được tính theo công thức

\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]

Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu (ảnh 1)

(S) có tâm I(1;1;1) và bán kính R=8.

Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).

Đường thẳng \[\Delta \] qua I và vuông góc với  (P) có phương trình là

\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]

Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]

Ta có\[H \in (P)\] nên:

\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]

\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP